Skip to content

Using Machine Learning Methods to Predict Similarity of Striations on Bullet Lands

Conference/Workshop:
2020 Joint Statistical Meetings (JSM)
Published: 2020
Primary Author: Heike Hofmann
Secondary Authors: Alicia L. Carriquiry, Susan VanderPlas
Research Area: Firearms and Toolmarks

Recent advances in microscopy have made it possible to collect 3D topographic data, enabling virtual comparisons based on the collected 3D data next to traditional comparison microscopy. Automatic matching algorithms have been introduced for various scenarios, such as matching cartridge cases (Tai and Eddy 2018) or matching bullet striae (Hare et al. 2017b, Chu et al 2013, De Kinder and Bonfanti 1999). One key aspect of validating automatic matching algorithms is to evaluate the performance of the algorithm on external tests. Here, we are presenting a discussion of the performance of the matching algorithm (Hare et al. 2017b) in three studies. We are considering matching performance based on the Random forest score, cross correlation, and consecutive matching striae (CMS) at the land-to-land level and, using Sequential Average Maxima scores, also at the bullet-to bullet level. Cross correlation and Random Forest scores both result in perfect discrimination of same-source and different-source bullets. At the land-to-land level, discrimination (based on area under the curve, AUC) is excellent (> 0.90).

Related Resources

Treatment of inconclusives in the AFTE range of conclusions

Treatment of inconclusives in the AFTE range of conclusions

In the past decade, and in response to the recommendations set forth by the National Research Council Committee on Identifying the Needs of the Forensic Sciences Community (2009), scientists have…
CSAFE 2021 Field Update

CSAFE 2021 Field Update

The 2021 Field Update was held June 14, 2021, and served as the closing to the first year of CSAFE 2.0. CSAFE brought together researchers, forensic science partners and interested…
Treatment of Inconclusive Results in Error Rates of Firearm Studies

Treatment of Inconclusive Results in Error Rates of Firearm Studies

This CSAFE webinar was held on February 10, 2021. Presenters: Heike Hofmann Professor and Kingland Faculty Fellow, Iowa State University Susan VanderPlas Research Assistant Professor, University of Nebraska, Lincoln Alicia…
CSAFE 2020 All Hands Meeting

CSAFE 2020 All Hands Meeting

The 2020 All Hands Meeting was held May 12 and 13, 2020 and served as the closing to the last 5 years of CSAFE research and focused on kicking off…