Skip to content

A Study in Reproducibility: The Congruent Matching Cells Algorithm and cmcR Package

Journal: The R Journal
Published: 2023
Primary Author: Joseph Zemmels
Secondary Authors: Susan Vanderplas, Heike Hofmann
Research Area: Firearms and Toolmarks

Scientific research is driven by our ability to use methods, procedures, and materials from previous studies and further research by adding to it. As the need for computationally-intensive methods to analyze large amounts of data grows, the criteria needed to achieve reproducibility, specifically computational reproducibility, have become more sophisticated. In general, prosaic descriptions of algorithms are not detailed or precise enough to ensure complete reproducibility of a method. Results may be sensitive to conditions not commonly specified in written-word descriptions such as implicit parameter settings or the programming language used. To achieve true computational reproducibility, it is necessary to provide all intermediate data and code used to produce published results. In this paper, we consider a class of algorithms developed to perform firearm evidence identification on cartridge case evidence known as the Congruent Matching Cells (CMC) methods. To date, these algorithms have been published as textual descriptions only. We introduce the first open-source implementation of the Congruent Matching Cells methods in the R package cmcR. We have structured the cmcR package as a set of sequential, modularized functions intended to ease the process of parameter experimentation. We use cmcR and a novel variance ratio statistic to explore the CMC methodology and demonstrate how to fill in the gaps when provided with computationally ambiguous descriptions of algorithms.

Related Resources

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

There currently are no shoe-scanning devices developed in the United States that can operate in a real-world, variable-weather environment in real-time. Forensics-focused groups, including the NIJ, expressed the need for…
A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

Forensic footwear impressions play a crucial role in criminal investigations, assisting in possible suspect identification. The quality of an impression collected from a crime scene directly impacts the forensic information…
Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical.…
Computational Shoeprint Analysis for Forensic Science

Computational Shoeprint Analysis for Forensic Science

Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…