Handwritten documents can be characterized by their content or by the shape of the written characters. We focus on the problem of comparing a person’s handwriting to a document of unknown provenance using the shape of the writing, as is done in forensic applications. To do so, we first propose a method for processing scanned handwritten documents to decompose the writing into small graphical structures, often corresponding to letters. We then introduce a measure of distance between two such structures that is inspired by the graph edit distance, and a measure of center for a collection of the graphs. These measurements are the basis for an outlier tolerant K‐means algorithm to cluster the graphs based on structural attributes, thus creating a template for sorting new documents. Finally, we present a Bayesian hierarchical model to capture the propensity of a writer for producing graphs that are assigned to certain clusters. We illustrate the methods using documents from the Computer Vision Lab dataset. We show results of the identification task under the cluster assignments and compare to the same modeling, but with a less flexible grouping method that is not tolerant of incidental strokes or outliers.
A clustering method for graphical handwriting components and statistical writership analysis

Journal: Statistical Analysis and Data Mining: The ASA Data Science Journal
Published: 2020
Primary Author: Amy M. Crawford
Secondary Authors: Nicholas S. Berry, Alicia L. Carriquiry
Type: Publication
Research Area: Handwriting
Related Resources
CSAFE Project Update & ASCLD FRC Collaboration
This presentation highlighted CSAFE’s collaboration with the ASCLD FRC Collaboration Hub.
Twin Convolutional Neural Networks to Classify Writers Using Handwriting Data
Identifying the source of handwriting is an important application in the field of forensic science that addresses questioned document evidence found in criminal cases and civil litigation. It is difficult,…
Quantifying Bayes Factors for Forensic Handwriting Evidence
Questioned Document Examiners (QDEs) are tasked with analyzing handwriting evidence to make source (or writership) determinations. The Center for Statistics and Applications of Forensic Evidence (CSAFE) has previously developed computational…
Quantifying Writer Variance Through Rainbow Triangle Graph Decomposition of the Common Word “the”
Handwriting comparative analysis is based on the principle that no two individuals can produce the same writing and that an individual cannot exactly reproduce his/her handwriting. This project aims to…