Handwritten documents can be characterized by their content or by the shape of the written characters. We focus on the problem of comparing a person’s handwriting to a document of unknown provenance using the shape of the writing, as is done in forensic applications. To do so, we first propose a method for processing scanned handwritten documents to decompose the writing into small graphical structures, often corresponding to letters. We then introduce a measure of distance between two such structures that is inspired by the graph edit distance, and a measure of center for a collection of the graphs. These measurements are the basis for an outlier tolerant K‐means algorithm to cluster the graphs based on structural attributes, thus creating a template for sorting new documents. Finally, we present a Bayesian hierarchical model to capture the propensity of a writer for producing graphs that are assigned to certain clusters. We illustrate the methods using documents from the Computer Vision Lab dataset. We show results of the identification task under the cluster assignments and compare to the same modeling, but with a less flexible grouping method that is not tolerant of incidental strokes or outliers.
A clustering method for graphical handwriting components and statistical writership analysis
Journal: Statistical Analysis and Data Mining: The ASA Data Science Journal
Published: 2020
Primary Author: Amy M. Crawford
Secondary Authors: Nicholas S. Berry, Alicia L. Carriquiry
Type: Publication
Research Area: Handwriting
Related Resources
Quantifying Bayes Factors for Forensic Handwriting Evidence
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Quantifying Writer Variance Through Rainbow Triangle Graph Decomposition
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024
A deep learning approach for the comparison of handwritten documents using latent feature vectors
Forensic questioned document examiners still largely rely on visual assessments and expert judgment to determine the provenance of a handwritten document. Here, we propose a novel approach to objectively compare…
A statistical approach to aid examiners in the forensic analysis of handwriting
We develop a statistical approach to model handwriting that accommodates all styles of writing (cursive, print, connected print). The goal is to compute a posterior probability of writership of a…