We develop a statistical approach to model handwriting that accommodates all styles of writing (cursive, print, connected print). The goal is to compute a posterior probability of writership of a questioned document given a closed set of candidate writers. Such probabilistic statements can support examiner conclusions and enable a quantitative forensic evaluation of handwritten documents. Writing is treated as a sequence of disjoint graphical structures, which are extracted using an automated and open-source process. The graphs are grouped based on the similarity of their shapes through a K-means clustering template. A person’s writing pattern can be characterized by the rate at which graphs are emitted to each cluster. The cluster memberships serve as data for a Bayesian hierarchical model with a mixture component. The rate of mixing between two parameters in the hierarchy indicates writing style.
A statistical approach to aid examiners in the forensic analysis of handwriting
Journal: Journal of Forensic Sciences
Published: 2023
Primary Author: Amy Crawford
Secondary Authors: Danica Ommen, Alicia Carriquiry
Type: Publication
Related Resources
Is it a True Match? Top k correlations in a database search
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Quantifying Bayes Factors for Forensic Handwriting Evidence
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Quantifying Writer Variance Through Rainbow Triangle Graph Decomposition
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024
Graph-Theoretic Techniques for Forensic Image Comparisons
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.