Skip to content

The q–q Boxplot

Journal: Journal of Computational and Graphical Statistics
Published: 2021
Primary Author: Jordan Rodu
Secondary Authors: Karen Kafadar
Research Area: Forensic Statistics

Boxplots have become an extremely popular display of distribution summaries for collections of data, especially when we need to visualize summaries for several collections simultaneously. The whiskers in the boxplot show only the extent of the tails for most of the data (with outside values denoted separately); more detailed information about the shape of the tails, such as skewness and “weight” relative to a standard reference distribution, is much better displayed via quantile–quantile (q-q) plots. We incorporate the q-q plot’s tail information into the traditional boxplot by replacing the boxplot’s whiskers with the tails from a q-q plot, and display these tails with confidence bands for the tails that would be expected from the tails of the reference distribution. We describe the construction of the “q-q boxplot” and demonstrate its advantages over earlier proposed boxplot modifications on data from economics and neuroscience, which illustrate the q-q boxplots’ effectiveness in showing important tail behavior especially for large datasets. The package qqboxplot (an extension to the ggplot2 package) is available for the R programming language. Supplementary files for this article are available online.

Related Resources

Is it a True Match? Top k correlations in a database search

Is it a True Match? Top k correlations in a database search

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Graph-Theoretic Techniques for Forensic Image Comparisons

Graph-Theoretic Techniques for Forensic Image Comparisons

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Presumption of Innocence, Probable Cause, and Prior Probability—Bayes Meets Due Process

Presumption of Innocence, Probable Cause, and Prior Probability—Bayes Meets Due Process

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Combining reproducibility and repeatability studies with applications in forensic science

Combining reproducibility and repeatability studies with applications in forensic science

Studying the repeatability and reproducibility of decisions made during forensic examinations is important in order to better understand variation in decisions and establish confidence in procedures. For disciplines that rely…