A common question in forensic analysis is whether two observed data sets originated from the same source or from different sources. Statistical approaches to addressing this question have been widely adopted within the forensics community, particularly for DNA evidence. Here we investigate the application of statistical approaches to same-source forensic questions for spatial event data, such as determining the likelihood that two sets of observed GPS locations were generated by the same individual. We develop two approaches to quantify the strength of evidence in this setting. The first is a likelihood ratio approach based on modeling the spatial event data directly. The second approach is to instead measure the similarity of the two observed data sets via a score function and then assess the strength of the observed score resulting in the score-based likelihood ratio. A comparative evaluation using geolocated Twitter event data from two large metropolitan areas shows the potential efficacy of such techniques.
Statistical Methods for the Forensic Analysis of Geolocated Event Data
Conference/Workshop:
US Digital Forensic Reserach Workshop
US Digital Forensic Reserach Workshop
Published: 2020
Primary Author: Christopher Galbraith
Secondary Authors: Padhraic Smyth, Hal S. Stern
Type: Presentation Slides
Research Area: Digital
Related Resources
Forensic Analysis of Android Cloud SDKs
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
The Impact of Multi-Camera Smart Phones on Source Camera Identification
An investigator has a questioned image from an unknown source and wants to determine whether it came from a camera on a person of interest’s smartphone. This scenario is referred…
Likelihood ratios for changepoints in categorical event data with applications in digital forensics
We investigate likelihood ratio models motivated by digital forensics problems involving time-stamped user-generated event data from a device or account. Of specific interest are scenarios where the data may have…
Producing Datasets: Capturing Images on Multi-Camera Smartphones for Source Camera Identification
This poster introduces the new CSAFE Multi-camera Smartphone Image Database and describes how the image were collected and reviewed.