We propose a novel method to quantify the similarity between an impression (Q) from an unknown source and a test impression (K) from a known source. Using the property of geometrical congruence in the impressions, the degree of correspondence is quantified using ideas from graph theory and maximum clique (MC). The algorithm uses the x and y coordinates of the edges in the images as the data. We focus on local areas in Q and the corresponding regions in K and extract features for comparison. Using pairs of images with known origin, we train a random forest to classify pairs into mates and non-mates. We collected impressions from 60 pairs of shoes of the same brand and model, worn over six months. Using a different set of very similar shoes, we evaluated the performance of the algorithm in terms of the accuracy with which it correctly classified images into source classes. Using classification error rates and ROC curves, we compare the proposed method to other algorithms in the literature and show that for these data, our method shows good classification performance relative to other methods. The algorithm can be implemented with the R package shoeprintr.
Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions
Journal: Journal of Applied Statistics
Published: 2020
Primary Author: Soyoung Park
Secondary Authors: Alicia Carriquiry
Type: Publication
Research Area: Footwear
Related Resources
Graph-Theoretic Techniques for Forensic Image Comparisons
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
ShoeCase: A data set of mock crime scene footwear impressions
This project’s main objective is to create an open-source database containing a sizeable number of high-quality images of shoe impressions. The Center for Statistics and Applications in Forensic Evidence (CSAFE)…
A finely tuned deep transfer learning algorithm to compare outsole images
In forensic practice, evaluating shoeprint evidence is challenging because the differences between images of two different outsoles can be subtle. In this paper, we propose a deep transfer learning-based matching…
An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics
We introduce an algorithmic approach designed to compare similar shoeprint images, with automated alignment. Our method employs the Iterative Closest Points (ICP) algorithm to attain optimal alignment, further enhancing precision…