Skip to content

Ensemble of Score Likelihood Ratios under the common source problem

Conference/Workshop:
South Dakota State University (SDSU) Data Science Symposium
Published: 2023
Primary Author: Frederico Veneri
Secondary Authors: Danica Ommen
Research Area: Forensic Statistics

Machine learning-based Score Likelihood Ratios have been proposed as an alternative to traditional Likelihood Ratios and Bayes Factor to quantify the value of evidence when contrasting two opposing propositions. Under the common source problem, the opposing proposition relates to the inferential problem of assessing whether two items come from the same source. Machine learning techniques can be used to construct a (dis)similarity score for complex data when developing a traditional model is infeasible, and density estimation is used to estimate the likelihood of the scores under both propositions.

In practice, the metric and its distribution are developed using pairwise comparisons constructed from a sample of the background population. Generating these comparisons results in a complex dependence structure violating assumptions fundamental to most methods. To remedy this lack of independence, we introduce a sampling approach to construct training and estimation sets where assumptions are met. Using these newly created datasets, we construct multiple base SLR systems and aggregate their information into a final score to quantify the value of evidence. Our experimental results show that this ensembled SLR can outperform traditional SLR in terms of the rate of misleading evidence, discriminatory power and show they are more reliable.

Related Resources

The q–q Boxplot

The q–q Boxplot

Boxplots have become an extremely popular display of distribution summaries for collections of data, especially when we need to visualize summaries for several collections simultaneously. The whiskers in the boxplot…
The Contribution of Forensic and Expert Evidence to DNA Exoneration Cases: An Interim Report

The Contribution of Forensic and Expert Evidence to DNA Exoneration Cases: An Interim Report

This report is from Simon A. Cole, Vanessa Meterko, Sarah Chu, Glinda Cooper, Jessica Weinstock Paredes, Maurice Possley, and Ken Otterbourg (2022), The Contribution of Forensic and Expert Evidence to…
Likelihood ratios for categorical count data with applications in digital forensics

Likelihood ratios for categorical count data with applications in digital forensics

We consider the forensic context in which the goal is to assess whether two sets of observed data came from the same source or from different sources. In particular, we…
CSAFE Project Update & ASCLD FRC Collaboration

CSAFE Project Update & ASCLD FRC Collaboration

This presentation highlighted CSAFE’s collaboration with the ASCLD FRC Collaboration Hub.