Machine learning-based score likelihood ratios (SLRs) have emerged as alternatives to traditional likelihood ratios and Bayes factors to quantify the value of evidence when contrasting two opposing propositions. When developing a conventional statistical model is infeasible, machine learning can be used to construct a (dis)similarity score for complex data and estimate the ratio of the conditional distributions of the scores. Under the common source problem, the opposing propositions address if two items come from the same source. To develop their SLRs, practitioners create datasets using pairwise comparisons from a background population sample. These comparisons result in a complex dependence structure that violates the independence assumption made by many popular methods. We propose a resampling step to remedy this lack of independence and an ensemble approach to enhance the performance of SLR systems. First, we introduce a source-aware resampling plan to construct datasets where the independence assumption is met. Using these newly created sets, we train multiple base SLRs and aggregate their outputs into a final value of evidence. Our experimental results show that this ensemble SLR can outperform a traditional SLR approach in terms of the rate of misleading evidence and discriminatory power and present more consistent results.
Ensemble learning for score likelihood ratios under the common source problem
Journal: Statistical Analysis and Data Mining
Published: 2023
Primary Author: Federico Veneri
Secondary Authors: Danica Ommen
Type: Publication
Research Area: Forensic Statistics
Related Resources
Score-based Likelihood Ratios Using Stylometric Text Embeddings
We consider the problem setting in which we have two sets of texts in digital form and would like to quantify our beliefs that the two sets of texts were…
Statistics and its Applications in Forensic Science and the Criminal Justice System
This presentation is from the 2024 Joint Statistical Meetings (JSM), Portland, Oregon, August 3-8, 2024.
Algorithmic matching of striated tool marks
Automatic matching algorithms for assessing the similarity between striation marks have been investigated for bullet lands and some tool marks, such as screwdrivers. We are interested in the investigation of…
Silencing the Defense Expert
In the wake of the 2009 NRC and 2016 PCAST Reports, the Firearms and Toolmark (FATM) discipline has come under increasing scrutiny. Validation studies like AMES I, Keisler, AMES II,…