Skip to content

Dependence among Randomly Acquired Characteristics on Shoeprints and their Features

Journal: Forensic Science International
Published: 2018
Primary Author: Naomi Kaplan
Secondary Authors: Micha Mandel, Serena Wiesner, Yoram Yekutieli, Yaron Shor, Clifford Spiegelman
Research Area: Footwear

Randomly acquired characteristics (RACs), also known as accidental marks, are random markings on a shoe sole, such as scratches or holes, that are used by forensic experts to compare a suspect’s shoe with a print found at the crime scene. This article investigates the relationships among three features of a RAC: its location, shape type and orientation. If these features, as well as the RACs, are independent of each other, a simple probabilistic calculation could be used to evaluate the rarity of a RAC and hence the evidential value of the shoe and print comparison, whereas a correlation among the features would complicate the analysis. Using a data set of about 380 shoes, it is found that RACs and their features are not independent, and moreover, are not independent of the shoe sole pattern. It is argued that some of the dependencies found are caused by the elements of the sole. The results have important implications for the way forensic experts should evaluate the degree of rarity of a combination of RACs.

Related Resources

Open Forensic Science in R

Open Forensic Science in R

This book is for anyone looking to do forensic science analysis in a data-driven and open way. Whether you are a student, teacher, or scientist, this book is for you. We take…
Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

We propose a novel method to quantify the similarity between an impression (Q) from an unknown source and a test impression (K) from a known source. Using the property of…
Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

We propose a novel method to quantify the similarity between an impression (Q) from an unknown source and a test impression (K) from a known source. Using the property of…
A database of two-dimensional images of footwear outsole impressions

A database of two-dimensional images of footwear outsole impressions

Footwear outsole images were obtained from 150 pairs of used shoes. The motivation for constructing the database was to enable a statistical analysis of two-dimensional (2D) images of shoe outsoles,…
Do you have 44.03 seconds?

44.3 Seconds. That is the average amount of time it takes for a visitor to provide site feedback.
Test it yourself by taking the survey.


    A scientist/researcherA member of the forensic science communityA journalist/publicationA studentOther. Please indicate.


    Learn more about CSAFE overall.Discover research CSAFE is undertaking.Explore collaboration opportunities.Find tools and education opportunities.Other. Please indicate.


    YesNo