Skip to content

Creating fingerprint databases and a Bayesian approach to quantify dependencies in evidence

Journal: Online repository of theses and dissertations in the University of Virginia Libraries
Published: 2018
Primary Author: Maria Tackett
Secondary Authors: Under advisement of Dan Spitzner
Research Area: Forensic Statistics

In 2009, the National Research Council issued “Strengthening Forensic Science in the United States: A Path Forward” about the need for more scientific rigor in forensic science. Since then, there has been an effort to make the methods used to analyze forensic evidence more objective, in part through the use of statistics to interpret the evidence. With Lindley (1977) as a guide, this research focuses on two aspects of statistics in forensic science. The first is the creation of large databases that can be used for the development and implementation of statistical methods. We propose a theoretical framework for fully-resourced databases that contain sufficient information to be used for these purposes and demonstrate their use in statistical inference, specifically how the databases can be used to systematically obtain prior information in the Bayesian framework. Recommendations are provided for the type of information that can be included in such databases in the context of fingerprint evidence.

The second aspect is quantifying and interpreting the weight of evidence when multiple candidates are examined as the source of a mark recovered from a crime scene. We propose accounting for the dependencies that exist in the weight of evidence for multiple candidates by imposing a constraint on the set of plausible models, and we examine the properties that exist under this constraint. This research is used to inform guidelines for the examination of multiple candidates identified by a fingerprint matching system such as the Automated Fingerprint Identification System (AFIS).

Related Resources

Source Camera Identification with Multi-Camera Smartphones

Source Camera Identification with Multi-Camera Smartphones

An overview of source camera identification on multi-camera smartphones, and introduction to the new CSAFE multi-camera smartphone image database, and a summary of recent results on the iPhone 14 Pro’s.
An alternative statistical framework for measuring proficiency

An alternative statistical framework for measuring proficiency

Item Response Theory, a class of statistical methods used prominently in educational testing, can be used to measure LPE proficiency in annual tests or research studies, while simultaneously accounting for…
Examiner variability in pattern evidence: proficiency, inconclusive tendency, and reporting styles

Examiner variability in pattern evidence: proficiency, inconclusive tendency, and reporting styles

The current approach to characterizing uncertainty in pattern evidence disciplines has focused on error rate studies, which provide aggregated error rates over many examiners and pieces of evidence. However, decisions…
Statistical Interpretation and Reporting of Fingerprint Evidence: FRStat Introduction and Overview

Statistical Interpretation and Reporting of Fingerprint Evidence: FRStat Introduction and Overview

The FRStat is a tool designed to help quantify the strength of fingerprint evidence. Following lengthy development and validation with assistance from CSAFE and NIST, in 2017 the FRStat was…