Skip to content

Creating fingerprint databases and a Bayesian approach to quantify dependencies in evidence

Journal: Online repository of theses and dissertations in the University of Virginia Libraries
Published: 2018
Primary Author: Maria Tackett
Secondary Authors: Under advisement of Dan Spitzner
Research Area: Forensic Statistics

In 2009, the National Research Council issued “Strengthening Forensic Science in the United States: A Path Forward” about the need for more scientific rigor in forensic science. Since then, there has been an effort to make the methods used to analyze forensic evidence more objective, in part through the use of statistics to interpret the evidence. With Lindley (1977) as a guide, this research focuses on two aspects of statistics in forensic science. The first is the creation of large databases that can be used for the development and implementation of statistical methods. We propose a theoretical framework for fully-resourced databases that contain sufficient information to be used for these purposes and demonstrate their use in statistical inference, specifically how the databases can be used to systematically obtain prior information in the Bayesian framework. Recommendations are provided for the type of information that can be included in such databases in the context of fingerprint evidence.

The second aspect is quantifying and interpreting the weight of evidence when multiple candidates are examined as the source of a mark recovered from a crime scene. We propose accounting for the dependencies that exist in the weight of evidence for multiple candidates by imposing a constraint on the set of plausible models, and we examine the properties that exist under this constraint. This research is used to inform guidelines for the examination of multiple candidates identified by a fingerprint matching system such as the Automated Fingerprint Identification System (AFIS).

Related Resources

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

There currently are no shoe-scanning devices developed in the United States that can operate in a real-world, variable-weather environment in real-time. Forensics-focused groups, including the NIJ, expressed the need for…
A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

Forensic footwear impressions play a crucial role in criminal investigations, assisting in possible suspect identification. The quality of an impression collected from a crime scene directly impacts the forensic information…
Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical.…
Computational Shoeprint Analysis for Forensic Science

Computational Shoeprint Analysis for Forensic Science

Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…