When a latent shoeprint is discovered at a crime scene, forensic analysts inspect it for distinctive patterns of wear such as scratches and holes (known as accidentals) on the source shoe’s sole. If its accidentals correspond to those of a suspect’s shoe, the print can be used as forensic evidence to place the suspect at the crime scene. The strength of this evidence depends on the random match probability—the chance that a shoe chosen at random would match the crime scene print’s accidentals. Evaluating random match probabilities requires an accurate model for the spatial distribution of accidentals on shoe soles. A recent report by the President’s Council of Advisors in Science and Technology criticized existing models in the literature, calling for new empirically validated techniques. We respond to this request with a new spatial point process model for accidental locations, developed within a hierarchical Bayesian framework. We treat the tread pattern of each shoe as a covariate, allowing us to pool information across large heterogeneous databases of shoes. Existing models ignore this information; our results show that including it leads to significantly better model fit. We demonstrate this by fitting our model to one such database.
A Bayesian Hierarchical Model for Evaluating Forensic Footwear Evidence
Published: 2020
Primary Author: Neil Spencer
Secondary Authors: Jared Murray
Type: Publication
Research Area: Footwear
Related Resources
Computational Shoeprint Analysis for Forensic Science
Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…
Challenges in Modeling, Interpreting, and Drawing Conclusions from Images as Forensic Evidence
When a crime is committed, law enforcement directs crime scene experts to obtain evidence that may be pertinent to identifying the perpetrator(s). Much of this evidence comes in the form…
Aligning Shoeprint Images that have nonlinear distortion effects
Shoeprints are aligned before assessing similarity, and automatic alignment algorithms can handle differences in translation, rotation [1], and scale. But shoeprints recorded at a crime scene may be partials photographed…
Graph-Theoretic Techniques for Forensic Image Comparisons
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.