When a latent shoeprint is discovered at a crime scene, forensic analysts inspect it for distinctive patterns of wear such as scratches and holes (known as accidentals) on the source shoe’s sole. If its accidentals correspond to those of a suspect’s shoe, the print can be used as forensic evidence to place the suspect at the crime scene. The strength of this evidence depends on the random match probability—the chance that a shoe chosen at random would match the crime scene print’s accidentals. Evaluating random match probabilities requires an accurate model for the spatial distribution of accidentals on shoe soles. A recent report by the President’s Council of Advisors in Science and Technology criticized existing models in the literature, calling for new empirically validated techniques. We respond to this request with a new spatial point process model for accidental locations, developed within a hierarchical Bayesian framework. We treat the tread pattern of each shoe as a covariate, allowing us to pool information across large heterogeneous databases of shoes. Existing models ignore this information; our results show that including it leads to significantly better model fit. We demonstrate this by fitting our model to one such database.
A Bayesian Hierarchical Model for Evaluating Forensic Footwear Evidence

Published: 2020
Primary Author: Neil Spencer
Secondary Authors: Jared Murray
Type: Publication
Research Area: Footwear
Related Resources
Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System
There currently are no shoe-scanning devices developed in the United States that can operate in a real-world, variable-weather environment in real-time. Forensics-focused groups, including the NIJ, expressed the need for…
A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning
Forensic footwear impressions play a crucial role in criminal investigations, assisting in possible suspect identification. The quality of an impression collected from a crime scene directly impacts the forensic information…
Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence
Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical.…
Computational Shoeprint Analysis for Forensic Science
Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…