A Clustering Method for Graphical Handwriting Components and Statistical Writership Analysis

Lead Researchers: Amy M. Crawford, Nicholas S. Berry and Alicia L. Carriquiry
Journal: Statistical Analysis and Data Mining | Publication Date: August 2020
Link: forensicstats.link/ClusteringMethod-DOI

OVERVIEW

Researchers developed and tested a statistical algorithm for analyzing the shapes made in handwriting to determine their source. Unlike other programs that analyze what words are written, this algorithm analyzes how the words are written.

THE GOALS

1. Develop a semi-automated process to examine and compare handwriting samples from questioned and reference documents.
2. Improve upon the existing methodology for determining writership.

APPROACH AND METHODOLOGY

In this study, researchers scanned and analyzed 162 handwritten documents by 27 writers from the Computer Vision Lab database, a publicly available source of handwritten text samples, and broke down the writing into 52,541 unique graphs using the processing program handwriter. From there, a K-means algorithm clustered the graphs into 40 groups of similar graphs, each anchored by a mean or center graph. To allocate graphs to groups, researchers developed a new way to measure the distance between graphs.

Then, researchers processed an additional document from each of the 27 writers — held back as a “questioned document” — to test if the algorithm could accurately determine which document belonged to which writer. The new method for clustering graphs appears to be an improvement over the current approach based on adjacency grouping, which relies only on edge connectivity of graphs.

Key Definitions:

Graphs: Simple structures with nodes and edges to represent shapes that constitute handwriting

Writership: The set of graphs a person typically makes when writing

K-means Algorithm: An iterative algorithm that separates data points into clusters based on nearest mean values

CONTACT

Website: forensicstats.org | Email: csafe@iastate.edu
The new method favors certain properties of handwriting over others to assess similarities and can be extended to incorporate additional features.

The mean of a group of graphs is often a shape that does not actually occur in the document. Instead of centering groups using a mean graph, researchers are exploring whether using an exemplar graph as a group’s anchor will simplify calculations.

NEXT STEPS

Access the full research study to learn more at forensicstats.link/ClusteringMethod. Explore and try the handwriter algorithm by downloading it at forensicstats.link/CSAFE-Tools.

Investigate publicly available databases of handwritten documents:
- CSAFE Handwriting database at forensicstats.link/Handwriting.
- Computer Vision Lab database at forensicstats.link/CVL-Database.

Additional relevant publications and presentations:
- Access the Database of Handwriting Samples for applications in forensic statistics (2020) at forensicstats.link/HandwritingSamples.

FOCUS ON THE FUTURE

The new method favors certain properties of handwriting over others to assess similarities and can be extended to incorporate additional features.

The mean of a group of graphs is often a shape that does not actually occur in the document. Instead of centering groups using a mean graph, researchers are exploring whether using an exemplar graph as a group’s anchor will simplify calculations.

FUNDING

CSAFE is a publicly funded organization headquartered at Iowa State University. The National Institute of Standards and Technology (NIST) is one of the center’s providers, supporting CSAFE as a nationally recognized Center of Excellence in Forensic Sciences, NIST Award # 70NANB15H176.