

Firearms and Toolmark Analysis

Presented by: Dr. Heike Hofmann

Research Area Objectives

Currently established comparison standard:

AFTE Theory of

identification

- 1. examine class characteristics
- 2. use microscopic analysis to assess detailed features

Identified Problems:

- 1. establishing error rates of identification process
- 2. subclass characteristics (determined by proficiency tests in Europe) are a key risk factor for false identifications.

CSAFE 1.0 Accomplishments

CSAFE 1.0 Accomplishments

- 1. Two automated **matching algorithms**: bullets (Hare et al., 2017a; Hare et al., 2017b) cartridge cases (Tai and Eddy, 2017)
- 2. **Open source** algorithms: *cartridge3D, x3ptools, bulletxtrctr*
- 3. **Open data**: 3d topographic high-resolution scans of bullet lands (~25,000) and cartridge cases (~2,000), mostly uploaded to the NIST Ballistics Toolmark Research Database Evaluation (NBTRD).

CSAFE 2.0 Objectives

CSAFE 2.0 Projects and Lead Investigators

F&T I- Statistical and Algorithmic Approaches to Matching Bullets and Cartridges Lead PI: Heike Hofmann, ISU

F&T II- Subclass Characterization and Analysis of Firearms Lead PI: Keith Morris, WVU

F&T IV- Evaluating Foundational Validity of Toolmark Analysis Lead PI: Maria Cuellar, UPenn

F&T I Statistical and Algorithmic Approaches to Matching Bullets and Cartridge Cases

Proposed Activities:

- Expand and refine matching algorithm: nontraditional rifling, new features based on image
- Quantify factors affecting matching performance: combination of firearm/ammunition, quantitatively assess quality of scans.
- Work with firearms examiners and crime labs to extend use of matching algorithms to labs

Potential Impact:

- Providing objective quantitative assessments that examiners can use during testimony
- Providing empirical support for the validity if firearms and toolmarks evaluation through objective algorithmic assessments
- Working with examiners to develop community confidence and trust in algorithmic results

F&T II Subclass characterization and analysis of firearms

Proposed Activities:

- Characterization of the manufacturing processes and breech faces
- Collaborate with firearm examiners to identify areas of subclass on all breech faces and test fires
- Collection of reference collections from five forensic laboratories
- Automated comparison using NIST congruent matching cells (CMC) algorithm with and without subclass characteristics present
- Reference collection of Contender G2 breech faces
- Creation of subclass markup GUI

Potential Impact:

- Test sets can be created from test fires (both with digital scans and double-castings)
- Examiner accuracy testing of identifying subclass characteristics
- Performance of NIST CMC algorithm with subclass present

Figure 7: Example heatmap of subclass characteristics. Refer to the electronic version for color.

F&T IV Evaluating Foundational Validity of Toolmark Analysis

Proposed Activities:

- **1. Database:** Create a database of high-quality toolmark images, both 2D and 3D, using a factorial design, based on NBIDE firearms database.
- **2. Algorithm:** Develop an algorithm to determine a score-based likelihood ratio.
- 3. Validation: Validate algorithm by testing its external validity.

Potential Impact:

- Start with simplest case to make progress in difficult field of toolmark analysis, which has many types of tools and degrees of freedom.
- **Develop standard statistical methods** for the analysis and comparison of toolmarks.
- **Expand the capacity** of federal, state, and local labs to deal with toolmark analysis.

Create new database of toolmarks (start in 2D, then NBIDE: 3D) Toolmarks:

- Firearm brand
- Firearm # (of same brand)
- Ammunition brand
- Iteration per firearm/ammo combination lteration #1...

- Screwdriver brand
 - Screwdriver # (of same brand)
- Angle, surface material (soft to hard), striation vs. imprint, etc.
- Iterations per angle/surface/etc. combination

Many degrees of freedom in screwdriver mark

Baiker et al. (2016).

Screwdriver striation (L) and impression marks (R).

Petraco (2011).

Where we would need help from you!

- Forensic examiners community:
 - Standard operating procedures for assessing firearm and toolmark evidence of labs
 - Test fires of (some of) the reference collections format needs to be determined, but ideally we would like 4 test fires for each firearm/ammunition combo
 - AFTE studies (past and on-going): we would be excited to get materials for 3d imaging!
- Forensic analysts:
 - Help us in running (proprietary) algorithms on publicly available data and make results available