
A Wild Manhunt for Stego Images
Created by Mobile Apps

Li Lin, Wenhao Chen, Stephanie Reinders, Min Wu*, Yong Guan, and
Jennifer Newman

Iowa State University
*University of Maryland

This work was partially funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE)
through Cooperative Agreement #70NANB15H176 between NIST and Iowa State University, which includes
activities carried out at Carnegie Mellon University, University of California Irvine, and University of Virginia.

Presenter
Presentation Notes
Hi everyone, My name is Li, I am a PhD candidate in applied math at ISU. and Today I will represent my group talk about the manhunt for stego images created by mobile apps. Dr. Newman and Dr. Guan are our team leaders. They are also my thesis major professors. Dr Wu from the university of Maryland is a world leader in image forensics and she gave us many useful suggestions for this project. The second author Wenhao Chen, is the phd candidate in computer engineering and his job is to help us analyze the apps and batch generate the images for the database. Stephanie and I are from math department, and we have been working with finding the criteria's for building the app image database and we also implement the ML methods to detect stego images by mobile apps.

Background

• As mobile Internet and telecommunication technology develops at
high speed, the digital image forensics academic community is facing
a growing challenge.

• Mobile applications (Apps) allow a user to easily edit/process an
image for a variety of purposes.

• Thanks to the improved cameras and editing apps on smartphones,
the volume of images presented to digital image forensic practitioners
increases every day.

• Unfortunately, terrorists, spies and child pornography predators are
also taking the advantage of the mobile app ecosystem to exchange
illegal files and photos.

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
As you know, with the development of mobile internet and telecommunication technology, the digital forensics community is facing a new challenge. Nowadays, mobile apps allow a user… while, unfortunately, terrorists, spies and child pornography pre…… And one type of those apps, is called stenography app, or stego app, for short.

Steganography Apps on Google Play

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
This is a short list of some most popular stego app available in the google paly store. Some of them has been downloaded and installed more than 10 thousands times, and only three of them have open source code. each app, it has its unique feature and method, which makes the detection even more difficult.

Steganography
• Steganography embeds data into an object, so that even the

existence of the secret message cannot be discovered by visual
observation.

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
So, what is steganography, how do these apps work? Actually, steganography is an art of hiding data into an object., so that even…..For a typical steganography process, the users need at least two inputs, one is the message to hide, we call it payload, and the other one is an selected image to cover, we call it cover image. By using some encryption method, the payload will be transfer into a bit stream. Then the users can use an embedding algorithm to write the bit stream into the cover images and then we got the output , is called stego images.
As you can see in this gray image at right corner , Salt pepper noise, those are difference. Without telling you, difference.

Steganography

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
Why? Because Many stego embedding algorithms try to hide the bitstream in the least significant bit plane of a digital image, and that is why we can not tell the difference of a pair of cover and stego images, by just looking at them.

Academic Steganalysis

• The forensic process to detect steganography
• Machine learning models are used extensively in academics

original image

cover

payload

Academic
Embedding
Algorithm

Feature
Extraction

Training &
Validation classifier

stego machine learning model using academic embedding algorithms
Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
Ok, so how can we catch them. Machine Learning has been widely used in detecting stegnoraphy in the academic world. To apply a ml-based method, we’d better have some cover-stego pairs of images in the training data with ground truth and then feature, classifiers-> test->

Challenges of Steganalysis for stego apps

• Unknown components when applied to mobile stego apps
• No access to cover image
• No control over the embedding rate (% of image data used for embedding)

input image

cover

payload

Embedding

Feature
Extraction

Training &
Validation classifier

stego

Pre-processing
Stego
App
Internal

machine learning model using mobile stego apps
Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
However, things are different in detecting stego images by stego apps. First of all , cover images, no feature, no classification. The other thing is … it is difficult to control the embedding rates as we can do in the academic world. As a result, we cannot evaluate our results for different embedding rate.

Our Contributions

• Construction of a heavily-provenanced digital image reference database,
StegoAppDB, that simulates digital evidence and provides data for
• Testing current steg detection tools – Stego Hunt, DC3 StegDetect
• Developing tools that detect steg images created from mobile apps

• StegoAppDB: A mobile stego image dataset for steganalysis
• https://forensicstats.org/stegoappdb/

• Detection of stego images from Android apps
• Detection using machine-learning detection
• Detection using signature-based methods

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
In this project, I work with my teammates to overcome those difficulties and find a way to reverse engineer those stego apps and add some functionalities to build the first benchmark image database of images created by apps for forensics purposes. With the help of StegoAppDB, we first test three… and results are not good and so later, we have been working to develop other effective methods.

StegoAppDB

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
In AAFS 2019, we have come here to introduce the stegoAppDB, since then, we updates several times, and add more devices and images to the database. Now there are nearly 1 million images from 28 devices, 10 different phone models and 6 different stego apps. We collect the data from a large variety of source with a wide range of noise levels and scene contents. StegoAppDB is online now, you can just google it SAD for short? With such data base, every one can develop and test their new detection algorithms.

Signature-based Steg Detection

• Signature definition:
• A fixed bit string pattern extractable from the stego image
• Constant strings embedded into fixed locations, to demarcate the message

• Example for the app “MobiStego”

“@!#” message “#!@”Payload composition:

Stego Image:

12 pixels

12 pixels

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes

In our signature-based detection, we define a signature as a fixed bit string pattern in the stego image.
This signature is the result of the app embedding constant strings into fixed locations, mostly for the convenience of extraction.
As an example, the app “MobiStego” has a signature that involves two constant strings.
One in front of the message and one after.
Since this app uses a lexicographical embedding in 2 bits per pixel, the first constant string is always embedded in the first 12 pixels. The second constant string, while not having a fixed embedding location, it can always be found somewhere along the lexicographical path in 12 consecutive pixels.

Signature-based Steg Detection

• Four stego apps contain embedding signatures

Steganography Master
constant
(102 bits) password constant

(24 bits) message constant
(88 bits)

Stego App Payload Composition (constant strings + user input)

Da Vinci Secret Image constant
(32 bits) password length

(32 bits)
length

(32 bits) message

MobiStego constant
(24 bits)

encrypted
message

constant
(24 bits)

PocketStego message constant
(8 bits)

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
Out of the 6 apps, we do signature-based detection on 4 of them.
Some apps have more distinct signatures, and some weaker.
These four apps all embed constant strings, and they all use lexicographical embedding paths.
We developed a detection tool that reads an image and matches the pixel values with these 4 signature patterns to detect stego.

Signature-based Steg Detection Results

• Results of signature-based detection on 202,080 images

Stego App Test Images Image Count Accuracy

Steganography Master
SM Stego Images 42,100 100%

Other Images 159,980 100%

DaVinci Secret Image
DV Stego Images 42,100 100%

Other Images 159,980 100%

MobiStego
MS Stego Images 42,100 100%

Other Images 159,980 100%

PocketStego
PS Stego Images 42,100 100%

Other Images 159,980 0.23%
Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
Extraction of message.

As expected, for the first 3 apps, we achieved perfect detection using their strong signature patterns.
While for the last app PocketStego, its weak signature pattern appears in almost every other image, resulting in a high false alarm rates, if we rely on signature pattern matching.
Overall, we showed that signature based detection can work well for apps that have distinct signature patterns.

//For the app “PocketStego”, our tool can correctly identify all the stegos, but also mis-classified the vast majority of other images. This is due to the weak signature pattern in PocketStego. There is only an 8-bit constant string attached at the end of payload, which coincidentally appeared in most of the images.

Machine Learning Detection Method

• Dataset of two case study
• 6000+ original images from 3 selected Phone models: half JPEG, half DNG.
• Cover/stego pairs created from two apps: PixelKnot and Steganography_M

• Feature sets
• JPEG rich model for frequency domain1 (for PixelKnot data)
• Spatial rich model for spatial domain2 (for Steganography_M data)

• Classifier: ensemble FLD3 (Fisher Linear Discriminant)/Random Forest
• Average error rate: (Missed detection rate + False alarm rate)/2
1 J. Kodovsk`y and J. Fridrich. Steganalysis of jpeg images using rich models. In Media Watermarking, Security, and Forensics 2012.
2 J. Fridrich and J. Kodovsky. Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 2012.
3 J. Kodovsky, J. Fridrich, and V. Holub. Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Forensics and
Security, 2012.

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
And for the two apps that do not leave signatures, we turn to machine learning.

For the machine learning experiments, we used cover/stego pairs created from the app PixelKnot, which is a frequency domain embedding app;
And Steganography_M, which embeds in the spatial domain.

Although
For feature extraction, we used the JPEG rich model for PixelKnot data
and we use spatial rich model for Steganography_M data.

We used the ensemble fisher linear discriminant classifier to perform classification.
And we use average error rate from missed detections and false alarms to evaluate the classifier’s performance.

Detecting PixelKnot stego images*

• However, machine learning trained
with proper data – available currently
only from StegoAppDB - gives similar
performance as in academic setting

• No known software package that can
test for steganography content in
mobile phone photographs from stego
apps on mobile phones

• StegoHunt, DC3 cannot detect mobile
stego images

J. Newman, L. Lin, W. Chen, S. Reinders, Y. Wang, M. Wu, Y. Guan. “StegoAppDB: A steganography apps forensics image database,” IS&T Int’l. Symp. on Electronic Imaging,
Media Watermarking, Security, and Forensics 2019, Burlingame, CA, pp. 536-1-536-12, (12), 2019.

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
Here we have the results for training and testing on PixelKnot data.
We took 850 cover/stego pairs using original JPEG images as input
We used 500 for training, and the other 350 for testing.
The average error rates are very low regardless of the image source device.

Machine Learning Detection Results

• Detecting stego images created from Steganography_M
• Spatial domain embedding with pseudo-random path
• 850 cover/stego pairs created from 850 center-cropped PNG images from

JPEG images as originals
• 500 for training, 350 for testing
• All stegos have 10% embedding rate

Input Image Source Input Image Size Stego Image Size Average Error

Google Pixel 512*512 512*512 0.0%

Samsung Galaxy S7 512*512 512*512 1.0%

OnePlus 5 512*512 512*512 1.4%

Mixed 512*512 512*512 0.8%
Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
And here we have the results for Steg_M, with similar experiment settings.
Except that for this app, we used smaller images as input, which are centercropped from the original JPEG images.
This is due to our resource constraints on running the feature extraction algorithms for the spatial domain.

The average error rates as we can see are also very low.

These two experiments show that, given access to a valid dataset, meaning the cover/stego pairs, machine learning algorithm can work very well for both spatial domain and JPEG domain embedding.

Machine Learning Detection Results

• Detecting stego images created by Steganography_M, with different
embedding rates, training sample sizes, and original image formats.

Original image format: JPEG

Er
ro

r R
at

e

Embedding Rate
3% 5% 7% 10% 15%

1.4%

1.2%

1.0%

0.8%

0.6%

0.4%

0.2%

Original image format: DNG

Er
ro

r R
at

e
Embedding Rate

3% 5% 7% 10% 15%

36%
34%
32%
30%
28%
26%
24%
22%
20%
18%
16%

training sample size: 350
training sample size: 500

training sample size: 800
training sample size: 1000

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Presenter
Presentation Notes
But we also know that, the performance of the machine learning can be influenced by many factors.
Here we show a collection of results on data with different embedding rates, different training sample sizes, and different original image formats.
The left graph shows the result on data created from JPEG original images, and the right from DNGs.

It is clear from both graph that,
higher embedding rates lead to lower error rates, as expected.
and the increase of training sample sizes does improve the performance, but only slightly, from 350 pairs for training to 1000 pairs for training.
What’s more interesting is that, the format of the original images has a big impact on the error rates.
The data created from JPEGs has overall lower than 1.4% errors, while the data from DNGs produced error between 16% to 36%.
The reason for this, is that DNG images, being raw camera sensor data, contain much higher noise level than compressed JPEG images. Making the steg detection more difficult

Wild Manhunt for Stego apps
• Goal: determine whether any given app

(NOT images) contains function/code
that performs image steganography.

• Approach:
• Extract expression trees (ET) by symbolic

execution on the app’s binary code.
 Match extracted ETs with a set of pre-

defined ETs (domain knowledge) using k-
nearest neighbor algorithm
 The kNN algorithm is based on Tree Edit

Distance – the minimum-cost sequence of
node edits to transform one tree to another

An example of expression tree, representing how a
stego pixel is generated from a cover pixel:

new_pixel = cover.getPixel(0,0) & 0xFFFFFFFE | (p[0]>>7 & 1)

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Conclusion

• We generated a mobile stego image dataset by reverse engineering
and instrumenting Android stego apps
• Available at: https://forensicstats.org/resources/datasets-tools/
• Current analysis process is manual, but future work will focus on automating

the procedure to efficiently add new data

• Analysis of stego apps showed embedding signatures existed and can
be utilized for high accuracy detection.

• Machine learning can work well without relying on signatures, given
access to the devices and cover images.

• A tool for hunting stego apps is still in development, and the progress
is encouraging.

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

Acknowledgements

• The project is funded by CSAFE
• From Iowa State University:

• Dr. Jennifer Newman and Dr.
Yong Guan

• Li Lin, Stephanie Reinders,
Wenhao Chen and Yangxiao
Wang

• From University of Maryland:
• Dr. Min Wu

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

	A Wild Manhunt for Stego Images� Created by Mobile Apps�
	Background
	Steganography Apps on Google Play
	Steganography
	Steganography
	Academic Steganalysis
	Challenges of Steganalysis for stego apps
	Our Contributions
	StegoAppDB
	Signature-based Steg Detection
	Signature-based Steg Detection
	Signature-based Steg Detection Results
	Machine Learning Detection Method
	Detecting PixelKnot stego images*
	Machine Learning Detection Results
	Machine Learning Detection Results
	Wild Manhunt for Stego apps
	Conclusion
	Acknowledgements

