Skip to content

Digital Evidence

Overarching GOALS

From the outset, CSAFE and NIST set out to address the growing demand for forensics tools and methods specifically for digital evidence –– all built on strong probabilistic and statistics foundations.

Digital devices play a central role in modern society and  criminal investigations requiring examination of digital devices and digital artifacts are common. 

Examples of digital evidence based activities of forensic experts include detecting the use of steganographic algorithms by criminals to hide illicit text or images in otherwise innocent pictures or videos, recovering illicit data/software hidden on phones/tablets, and examining digital traces of user activity (e.g., messages/texts, login events) for signs of criminal activity.

JenniferNewman_web

Jennifer Newman

Associate Professor

Iowa State University

PadhraicSmyth_web

Padhraic Smyth

Chancellor's Professor

University of California, Irvine

YongGuan1_square

Yong Guan

Professor

Iowa State University

Other Contributors

Roy Maxion
maxion@cs.cmu.edu

Hal Stern
sternh@uci.edu

Li Lin
llin@iastate.edu

Barbara Guttmann (NIST) barbara.guttman@nist.gov

focus Areas

The CSAFE team at ISU has developed and made public a reference dataset, StegoAppDB, comprised of more than 960,000 highly-provenanced image data created using our unique approach of modeling the steganography (stego) software applications (because their algorithms are not public). The data is used to develop and test algorithms and create new models of the camera pipeline. The next generation of algorithms for detecting hidden images will rely on deep learning algorithms with millions of free parameters (see, e.g., Boroumand et al., 2019). We are growing the database substantially through automation of the image data collection and stego creation process, such as using a drone to collect copious amounts of image data — in order to allow investigators to work with deep learning methods.

Steganography is a tool to send a secret message hidden in a common medium, like a digital image, so that the very existence of the payload escapes notice. The effort to hide and detect payload are inverse: a developer can easily create an app to hide payload, while steganalysis, or detection of hidden content, by a forensic image analyst requires expert knowledge and often extensive resources. Hundreds of thousands of stego apps have been downloaded for mobile devices, yet, until recently, steganalysis has appeared mainly in academic settings and not specifically for mobile apps.

In CSAFE 1.0, our project focused on the careful construction of the first forensic reference database for stego images created from mobile apps, producing StegoAppDB. StegoAppDB has more than 960,000 innocent and stego images, is fully provenanced and copyright-free, and publicly available online. However, StegoAppDB contains only indoor scenes, a limited number of distinct scenes, and a limited number of auto exposure images. For CSAFE 2.0, we propose to add image data selectively to enhance the attractiveness of StegoAppDB for wider use in the forensic imaging community, in the following manner:

  1. Add several million outdoor images so that the most successful machine learning techniques, deep learning neural networks, have access to ample data.
  2. Add images that have been photo-edited before embedding payload, which we suspect is a common occurrence. In fact, it is speculated that image editing operations may affect steganalysis error rates, but little to nothing is known about this, and certainly nothing for mobile stego images.
  3. Include stego apps beyond those currently in StegoAppDB and create an in-house detection tool for verification of our stego process, since no software package exists specifically to detect stego images created with mobile stego apps. We will use emulators and reverse engineering for the stego app analysis to retain accurate parameters for data provenance.

Our goal is to acquire outdoor scene data in a resource-efficient manner using a car, a bike, and/or a robot, with our in-house camera app Cameraw, taking many photos in an automated fashion, using simple and inexpensive mounts.

To establish support in and partnership with the practitioner community, we propose to conduct a brief survey at the beginning of the project. Its goal is to obtain information on the status quo of steganography in the digital evidence community and establish connections with labs to identify their needs as related to steganography. During meetings at SWGDE in 2019, the PI met Glenn Cavin, Lieutenant, Plano Police Department, Plano, Texas, who has provided a letter of support for his interest in this project. Additionally, note that the detection tool could be of potential interest to forensic practitioners.

The expanded database from combinations of these three image generation methods will allow users access to more realistically simulated evidence for mobile steganography and provide a source of data for tool development of mobile steganalysis. The in-house detection tool might provide insight for such a tool in the long-term.

The goal of this project is to develop new statistical methodologies to support digital forensics in analysis of user-generated event data — focusing on native or cloud-based logged event data from devices such as computers and mobile phones, typically of the form <accountID, timestamp, geolocation, metadata>. The types of forensic questions to be addressed will focus on identity-related questions, such as whether two sets of geolocation events were generated by the same individual or by two different individuals.

The rapid increase in the use of digital devices in the past decade has resulted in significant new challenges for digital forensics. In this context, the goal of this project is to develop new statistical methodologies to support digital forensics in analysis of user-generated event data. The project will focus on native or cloud-based logged event data from devices such as computers and mobile phones, typically of the form <accountID, timestamp, geolocation, metadata>. The types of forensic questions to be addressed will focus on identity-related questions, such as whether two sets of geolocation events were generated by the same individual or by two different individuals. Traditional approaches in statistical forensics, such as likelihood ratios and score-based likelihood ratios, will be extended to handle user-generated event data, particularly data with spatial and spatio-temporal information, building on our prior work in Phase 1 of CSAFE. The extensions will require development of robust and accurate new probabilistic models and fast new algorithms for large data sets. The project will use a variety of different real-world user event datasets as testbeds for development and evaluation. Deliverables from the project will include research papers, tutorial webinars, public testbed datasets and open-source software.

With the EviHunter tools, we are constructing a prototype Android App Evidence Database. In Phase II of the project we plan to extend EviHunter to be able to analyze complex features of Android apps caused by addressing current challenges. With the EviHunter technologies and AED, we expect that forensic investigators will improve their case work in terms of better efficiency, precision and completeness.

The plethora of mobile apps has introduced significant challenges to digital forensics practitioners, due to the large number and diversity of apps, for example over 2.6 million apps on Google Play plus many other apps available from 53 other app stores across the world. The average smartphone user has more than 80 apps on their phone and uses close to 40 of them each month. One chilling fact is that the lack of expert-knowledge about these large number and various types of apps has led to the practitioners’ challenges, including the inability of keeping up with the quick updates of apps on the app markets, discover critical and relevant evidence, or common problems of large casework backlogs in crime labs.

We propose this project that ultimately aims to develop EviHunter, a new path-, context-, flow-sensitive Android application program analysis tool set, to report the list of forensic relevant evidential data generated from the Android apps on a mobile device, by parsing the mobile application installation package using both static and dynamic approaches. During the first five years of the CSAFE project, we developed automated Android app program analysis tools to discover most (if not all) evidential data generated by the apps from a suspect’s mobile device or a remote cloud server. We have developed an award-winning EviHunter toolset (published at ACM CCS 2018 and IEEE SADFE 2018), and with the EviHunter tools, we are constructing a prototype Android App Evidence Database. In the next three years of the project (CSAFE Phase II), we plan to extend EviHunter to be able to analyze complex features of Android apps caused by addressing the following challenges: (1) software obfuscation, (2) limited capability of Soot in generating call graphs, (3) packing/unpacking of apps, (4) native code/3rd-libraries, (5) adapting dynamic Monkey-based tool into better supporting for dynamic EviHunter, and (6) building a better and more complete list of source/sink methods. Also, we will review the design of the prototyped EviHunter tools to optimize the code implementation to reduce the memory space usage and improve the computation complexity. With the deeper knowledge of evidence types and their frequency of usage, we plan to apply statistical methods to focus on more critical program paths inside the apps to speed up the app analysis process.

We also plan to continue to collect and construct (likely the largest) Android App Evidence Database. We will work with Iowa State University Legal Counsel to examine the potential legal issues and make the database accessible to the practitioners.

With the EviHunter technologies and AED, we expect that forensic investigators will improve their case work in terms of better efficiency, precision and completeness, compared against the current mobile device forensic practice that performs (to some extent) a manual process via Cellebrite and other mobile forensic tools. In an ideal case, we hope to reduce the case time (on a mobile device) from one or two days to 10-15 minutes, which will significantly make the practitioners’ life easier.

Knowledge transfer

  • Type

Found 28 Results
Page 2 of 2

Forensic Analysis of Android Steganography Apps

Type: Research Area(s):

Published: 2018 | By: Wenhao Chen

The processing power of smartphones supports steganographic algorithms that were considered to be too computationally intensive for handheld devices. Several steganography apps are now available on mobile phones to support covert communications using digital photographs. This chapter focuses on two…

View on Digital Repository


StegoDB: a smartphone camera image database for benchmarking image forensics

Type: Research Area(s):

Published: 2018 | By: Jennifer Newman

This presentation introduces StegoDB: a smartphone camera image database for benchmarking image forensics

View on Digital Repository


Dynamic Taint Analysis Tool for Android App Forensics

Type: Research Area(s):

Published: 2019 | By: Zhen Xu

The plethora of mobile apps introduce critical challenges to digital forensics practitioners, due to the diversity and the large number (millions) of mobile apps available to download from Google play, Apple store, as well as hundreds of other online app…

View on Digital Repository


Dynamic Taint Analysis for Digital Forensics

Type: Research Area(s):

Published: 2019 | By: Zhen Xu

This presentation examines how the plethora of mobile apps introduce critical challenges to digital forensics practitioners. CSAFE developed an automated mobile app analysis tool to discover evidentiary data generated and left on a device, as well as created an app…

View on Digital Repository


Dynamic Taint Analysis Tool for Android App Forensics

Type: Research Area(s):

Published: 2018 | By: Zhen Xu

The plethora of mobile apps introduce critical challenges to digital forensics practitioners, due to the diversity and the large number (millions) of mobile apps available to download from Google play, Apple store, as well as hundreds of other online app…

View on Digital Repository


Statistical Methods for Analyzing Event Time-Series Data in Digital Forensics

Type: Research Area(s):

This CSAFE webinar was presented by Dr. Padhraic Smyth from University of California, Irvine on September 28, 2017. Description: Time-series of user-generated events are routinely captured and logged on devices such as computers and mobile phones. This type of data…


Statistical Analysis of User-Event Data in a Digital Forensics Context

Type: Research Area(s):

Published: 2017 | By: Chris Galbraith

This presentation was an overview of statistical analysis of User-Event Data in a Digital Forensics Context, including likelihood ratio and marked point processes

View on Digital Repository


Analyzing User-Event Data Using Score- Based Likelihood Ratios with Marked Point Processes

Type: Research Area(s):

Published: 2017 | By: Christopher Galbraith

In this paper we investigate the application of score-based likelihood ratio techniques to the problem of detecting whether two time-stamped event streams were generated by the same source or by two different sources. We develop score functions for event data…

View on Digital Repository


Page 2 of 2

COMMUNITY CALL-TO-ACTION

Want to collaborate with CSAFE on a project. Contact us to share your idea.

Do you have 44.03 seconds?

44.3 Seconds. That is the average amount of time it takes for a visitor to provide site feedback.
Test it yourself by taking the survey.


A scientist/researcherA member of the forensic science communityA journalist/publicationA studentOther. Please indicate.


Learn more about CSAFE overall.Discover research CSAFE is undertaking.Explore collaboration opportunities.Find tools and education opportunities.Other. Please indicate.


YesNo