Skip to content

Towards a likelihood ratio approach for bloodstain pattern analysis

Journal: Forensic Science International
Published: 2022
Primary Author: Tong Zou
Secondary Authors: Hal Stern

In this work, we explore the application of likelihood ratio as a forensic evidence assessment tool to evaluate the causal mechanism of a bloodstain pattern. It is assumed that there are two competing hypotheses regarding the cause of a bloodstain pattern. The bloodstain patterns are represented as a collection of ellipses with each ellipse characterized by its location, size and orientation. Quantitative measures and features are derived to summarize key aspects of the patterns. A bivariate Gaussian model is chosen to estimate the distribution of features under a given hypothesis and thus approximate the likelihood of a pattern. Published data with 59 impact patterns and 55 gunshot patterns is used to train and evaluate the model. Results demonstrate the feasibility of the likelihood ratio approach for bloodstain pattern analysis. The results also hint at some of the challenges that need to be addressed for future use of the likelihood ratio approach for bloodstain pattern analysis.

Related Resources

Is it a True Match? Top k correlations in a database search

Is it a True Match? Top k correlations in a database search

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Graph-Theoretic Techniques for Forensic Image Comparisons

Graph-Theoretic Techniques for Forensic Image Comparisons

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Presumption of Innocence, Probable Cause, and Prior Probability—Bayes Meets Due Process

Presumption of Innocence, Probable Cause, and Prior Probability—Bayes Meets Due Process

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Combining reproducibility and repeatability studies with applications in forensic science

Combining reproducibility and repeatability studies with applications in forensic science

Studying the repeatability and reproducibility of decisions made during forensic examinations is important in order to better understand variation in decisions and establish confidence in procedures. For disciplines that rely…