Skip to content

The effect of image descriptors on the performance of classifiers of footwear outsole image pairs

Journal: Forensic Science International
Published: 2022
Primary Author: Soyoung Park
Secondary Authors: Alicia Carriquiry
Research Area: Footwear

Shoe prints are commonly found at the scene of a crime and can sometimes help link a suspect to the scene. Because prints tend to be partially observed or smudgy, comparing crime scene prints with reference images from a putative shoe can be challenging. Footwear examiners rely on guidelines such as those published by SWGTREAD [1] to visually assess the similarity between two or more footwear impressions, one reason being that reliable, quantitative methods have yet to be validated for use in real cases. To help in the development of such methods, we created a study dataset of images of outsole impressions that shared class characteristics and degree of wear and that were subject to a specific type of degradation. We also propose a method to quantify the similarity between two outsole images that extends the capabilities of MC-COMP [2]. The proposed method is composed of three steps; (1) extracting image descriptors, (2) aligning images using the maximum clique, (3) calculating similarity values using two different classifiers; (a) degree of overlap between the two images, and (b) a score produced by a random forest. To explore the performance of the algorithm we propose, we compared degraded, crime scene-like images to high-quality reference images produced by the same or by different shoes. Even though comparisons involved matches or very close non-matches, and one of the images was blurry, the algorithm shows good source classification performance.

Related Resources

Graph-Theoretic Techniques for Forensic Image Comparisons

Graph-Theoretic Techniques for Forensic Image Comparisons

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
ShoeCase: A data set of mock crime scene footwear impressions

ShoeCase: A data set of mock crime scene footwear impressions

This project’s main objective is to create an open-source database containing a sizeable number of high-quality images of shoe impressions. The Center for Statistics and Applications in Forensic Evidence (CSAFE)…
A finely tuned deep transfer learning algorithm to compare outsole images

A finely tuned deep transfer learning algorithm to compare outsole images

In forensic practice, evaluating shoeprint evidence is challenging because the differences between images of two different outsoles can be subtle. In this paper, we propose a deep transfer learning-based matching…
An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics

An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics

We introduce an algorithmic approach designed to compare similar shoeprint images, with automated alignment. Our method employs the Iterative Closest Points (ICP) algorithm to attain optimal alignment, further enhancing precision…