Handwriting analysis is conducted through the expertise of Forensic Document Examiners (FDEs) by visually comparing writing samples. Through their training and years of experience, FDEs are able to recognize critical characteristics of writing to evaluate the evidence of writership. In recent years, there have been incentives to further investigate how to quantify the similarity between two written documents to support the conclusions drawn by FDEs. One way to extract information from these documents is to define various features within handwritten samples. Using an automatic algorithm within the ‘handwriter’ package in R, a sample can split into “graphs”, which are small units of writing. These graphs are sorted into 40 exemplar groups or “clusters”. The clusters consist of graphs that have similar structures found in documents throughout a database with many writers. The number of graphs per cluster for each document written by a given person acts as a quantitative feature of the handwriting. This project aims to use experimental data collected at CSAFE to study how to assess source-level hypotheses and obtain “weight-of-evidence” summaries to support examiner conclusions. Specifically, statistical models can be used to compute Bayes factors, likelihood ratios, and four different types of score-based likelihood ratios. Common source score-based likelihood ratios are explored, along with trace-anchored, source-anchored, or general-match specific source varieties, using machine learning algorithms with high discriminating capabilities.
Statistical support for weight of evidence determinations of handwriting evidence

Conference/Workshop:
European Network of Forensic Handwriting Experts (ENFHEX) Conference and Business Meeting
European Network of Forensic Handwriting Experts (ENFHEX) Conference and Business Meeting
Published: 2021
Primary Author: Danica Ommen
Secondary Authors: Madeline Johnson
Type: Presentation Slides
Related Resources
Score-based Likelihood Ratios Using Stylometric Text Embeddings
We consider the problem setting in which we have two sets of texts in digital form and would like to quantify our beliefs that the two sets of texts were…
Statistics and its Applications in Forensic Science and the Criminal Justice System
This presentation is from the 2024 Joint Statistical Meetings (JSM), Portland, Oregon, August 3-8, 2024.
Algorithmic matching of striated tool marks
Automatic matching algorithms for assessing the similarity between striation marks have been investigated for bullet lands and some tool marks, such as screwdrivers. We are interested in the investigation of…
Silencing the Defense Expert
In the wake of the 2009 NRC and 2016 PCAST Reports, the Firearms and Toolmark (FATM) discipline has come under increasing scrutiny. Validation studies like AMES I, Keisler, AMES II,…