A common question in forensic analysis is whether two observed data sets originated from the same source or from different sources. Statistical approaches to addressing this question have been widely adopted within the forensics community, particularly for DNA evidence. Here we investigate the application of statistical approaches to same-source forensic questions for spatial event data, such as determining the likelihood that two sets of observed GPS locations were generated by the same individual. We develop two approaches to quantify the strength of evidence in this setting. The first is a likelihood ratio approach based on modeling the spatial event data directly. The second approach is to instead measure the similarity of the two observed data sets via a score function and then assess the strength of the observed score resulting in the score-based likelihood ratio. A comparative evaluation using geolocated Twitter event data from two large metropolitan areas shows the potential efficacy of such techniques.
Statistical Methods for the Forensic Analysis of Geolocated Event Data

Journal: Forensic Science International: Digital Investigation
Published: 2020
Primary Author: Christopher Galbraith
Secondary Authors: Padhraic Smyth, Hal S. Stern
Type: Publication
Research Area: Digital
Related Resources
Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System
There currently are no shoe-scanning devices developed in the United States that can operate in a real-world, variable-weather environment in real-time. Forensics-focused groups, including the NIJ, expressed the need for…
Examiner consistency in perceptions of fingerprint minutia rarity
Friction ridge examiners (FREs) identify distinctive features (minutiae) in fingerprints and consider how rare these observed minutiae are in their decisions about both the value of a fingerprint and whether…
Incorrect statistical reasoning in Guyll et al. leads to biased claims about strength of forensic evidence
Guyll et al. (1) make an error in statistical reasoning that could lead judges and jurors in criminal trials to grossly misinterpret forensic evidence. Their error leads to highly inflated…
Interoperability Study of 3D Instruments Used in Firearms Identification
In forensic firearms identification, one of the newest emerging technologies is three-dimensional (3D) imaging. The 3D technology allows firearms examiners to virtually compare high-resolution 3D images of the surfaces of…



