Skip to content

Statistical Learning Algorithms for Forensic Scientists

Conference/Workshop:
American Academy of Forensic Sciences Annual Scientific Meeting
Published: 2020
Primary Author: Alicia L. Carriquiry
Secondary Authors: Heike Hofmann, Michael J. Salyards, Robert M. Thompson
Research Area: Footwear

The goals of this workshop are to: (1) introduce attendees to the basics of supervised learning algorithms in the context of forensic applications, including firearms and footwear examination and trace evidence, while placing emphasis on classification trees, random forests, and, time permitting, neural networks; (2) introduce the concept of a similarity score to quantify the similarity between two items; (3) show how learning algorithms can be trained to classify objects into pre-determined classes; (4) discuss limitations of Machine Learning (ML) algorithms and introduce methods for assessing their performance; and (5) discuss the concept of a Score-based Likelihood Ratio (SLR): computation, advantages, and limitations.

Related Resources

Computational Shoeprint Analysis for Forensic Science

Computational Shoeprint Analysis for Forensic Science

Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…
Challenges in Modeling, Interpreting, and Drawing Conclusions from Images as Forensic Evidence

Challenges in Modeling, Interpreting, and Drawing Conclusions from Images as Forensic Evidence

When a crime is committed, law enforcement directs crime scene experts to obtain evidence that may be pertinent to identifying the perpetrator(s). Much of this evidence comes in the form…
Aligning Shoeprint Images that have nonlinear distortion effects

Aligning Shoeprint Images that have nonlinear distortion effects

Shoeprints are aligned before assessing similarity, and automatic alignment algorithms can handle differences in translation, rotation [1], and scale. But shoeprints recorded at a crime scene may be partials photographed…
Graph-Theoretic Techniques for Forensic Image Comparisons

Graph-Theoretic Techniques for Forensic Image Comparisons

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.