Skip to content

Statistical Learning Algorithms for Forensic Scientists

Conference/Workshop:
American Academy of Forensic Sciences Annual Scientific Meeting
Published: 2020
Primary Author: Alicia L. Carriquiry
Secondary Authors: Heike Hofmann, Michael J. Salyards, Robert M. Thompson
Research Area: Footwear

The goals of this workshop are to: (1) introduce attendees to the basics of supervised learning algorithms in the context of forensic applications, including firearms and footwear examination and trace evidence, while placing emphasis on classification trees, random forests, and, time permitting, neural networks; (2) introduce the concept of a similarity score to quantify the similarity between two items; (3) show how learning algorithms can be trained to classify objects into pre-determined classes; (4) discuss limitations of Machine Learning (ML) algorithms and introduce methods for assessing their performance; and (5) discuss the concept of a Score-based Likelihood Ratio (SLR): computation, advantages, and limitations.

Related Resources

Automatic Class Characteristic Recognition in Shoe Tread Images

Automatic Class Characteristic Recognition in Shoe Tread Images

One of the fundamental problems in footwear forensics is that the distribution of class characteristics in the local population is not currently knowable. Surveillance devices for gathering this data are…
Modeling And iNventory of Tread Impression System (MANTIS): The development, deployment and application of an active footwear data collection system

Modeling And iNventory of Tread Impression System (MANTIS): The development, deployment and application of an active footwear data collection system

This CSAFE webinar was held on March 24, 2022. Presenters: Dr. Richard Stone Iowa State University Dr. Susan Vanderplas University of Nebraska, Lincoln Presentation Description: This webinar details the development,…
Footwear Research in CSAFE

Footwear Research in CSAFE

This presentation provided an overview of CSAFE’s footwear research and was presented at IAI in 2021