Skip to content

Statistical and Computational Tools for Automated Matching of Footwear Class Characteristics

Type: Webinar
Research Area: Footwear

This CSAFE Center Wide webinar was presented on April 27, 2018 by Dr. Charless Fowlkes, CSAFE researcher and associate professor of computer science at University of California, Irvine.

Presentation Description:

We investigate the problem of automatically determining shoe outsole class characteristics from crime scene impression evidence using computer vision and machine learning techniques. This problem can be formulated as an image retrieval task: given a photo of crime scene evidence, return a ranked list of matching candidates from a database of reference prints. I will describe our approach to automatically extracting tread pattern features using convolutional neural nets and discuss how these features can be robustly compared across images using normalized correlation measures. This framework can be tuned automatically from training data and currently produces state-of-the-art matching performance on benchmark evaluations. Finally, I will discuss some of the challenges in assembling and maintaining a comprehensive database of reference tread patterns.

 

 

Related Resources

Graph-Theoretic Techniques for Forensic Image Comparisons

Graph-Theoretic Techniques for Forensic Image Comparisons

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
ShoeCase: A data set of mock crime scene footwear impressions

ShoeCase: A data set of mock crime scene footwear impressions

This project’s main objective is to create an open-source database containing a sizeable number of high-quality images of shoe impressions. The Center for Statistics and Applications in Forensic Evidence (CSAFE)…
A finely tuned deep transfer learning algorithm to compare outsole images

A finely tuned deep transfer learning algorithm to compare outsole images

In forensic practice, evaluating shoeprint evidence is challenging because the differences between images of two different outsoles can be subtle. In this paper, we propose a deep transfer learning-based matching…
An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics

An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics

We introduce an algorithmic approach designed to compare similar shoeprint images, with automated alignment. Our method employs the Iterative Closest Points (ICP) algorithm to attain optimal alignment, further enhancing precision…