Skip to content

Likelihood ratios for changepoints in categorical event data with applications in digital forensics

Journal: Journal of Forensic Sciences
Published: 2024
Primary Author: Rachel Longjohn
Secondary Authors: Padhraic Smyth

We investigate likelihood ratio models motivated by digital forensics problems involving time-stamped user-generated event data from a device or account. Of specific interest are scenarios where the data may have been generated by a single individual (the device/account owner) or by two different individuals (the device/account owner and someone else), such as instances in which an account was hacked or a device was stolen before being associated with a crime. Existing likelihood ratio methods in this context require that a precise time is specified at which the device or account is purported to have changed hands (the changepoint)—this is the known changepoint likelihood ratio model. In this paper, we develop a likelihood ratio model that instead accommodates uncertainty in the changepoint using Bayesian techniques, that is, an unknown changepoint likelihood ratio model. We show that the likelihood ratio in this case can be calculated in closed form as an expression that is straightforward to compute. In experiments with simulated changepoints using real-world data sets, the results demonstrate that the unknown changepoint model attains comparable performance to the known changepoint model that uses a perfectly specified changepoint, and considerably outperforms the known changepoint model that uses a misspecified changepoint, illustrating the benefit of capturing uncertainty in the changepoint.

Related Resources

Score-based Likelihood Ratios Using Stylometric Text Embeddings

Score-based Likelihood Ratios Using Stylometric Text Embeddings

We consider the problem setting in which we have two sets of texts in digital form and would like to quantify our beliefs that the two sets of texts were…
Statistics and its Applications in Forensic Science and the Criminal Justice System

Statistics and its Applications in Forensic Science and the Criminal Justice System

This presentation is from the 2024 Joint Statistical Meetings (JSM), Portland, Oregon, August 3-8, 2024.
Algorithmic matching of striated tool marks

Algorithmic matching of striated tool marks

Automatic matching algorithms for assessing the similarity between striation marks have been investigated for bullet lands and some tool marks, such as screwdrivers. We are interested in the investigation of…
Silencing the Defense Expert

Silencing the Defense Expert

In the wake of the 2009 NRC and 2016 PCAST Reports, the Firearms and Toolmark (FATM) discipline has come under increasing scrutiny. Validation studies like AMES I, Keisler, AMES II,…