Skip to content

Implementation of a Blind Quality Control Program in Blood Alcohol Analysis

Journal: Journal of Analytical Toxicology
Published: 2019
Primary Author: Jackeline Moral
Secondary Authors: Callan Hundel, Dayong Lee, Maddisen Neuman, Aimee Grimaldi, Maria Cuellar, Peter Stout

Declared proficiency tests are limited in their use for testing the performance of the entire system, because analysts are aware that they are being tested. A blind quality control (BQC) is intended to appear as a real case to the analyst to remove any intentional or subconscious bias. A BQC program allows a real-time assessment of the laboratory’s policies and procedures and monitors reliability of casework. In September 2015, the Houston Forensic Science Center (HFSC) began a BQC program in blood alcohol analysis. Between September 2015 and July 2018, HFSC submitted 317 blind cases: 89 negative samples and 228 positive samples at five target concentrations (0.08, 0.15, 0.16, 0.20 and 0.25 g/100 mL; theoretical targets). These blood samples were analyzed by a headspace gas chromatograph interfaced with dual-flame ionization detectors (HS-GC-FID). All negative samples produced `no ethanol detected’ results. The mean (range) of reported blood alcohol concentrations (BACs) for the aforementioned target concentrations was 0.075 (0.073–0.078), 0.144 (0.140–0.148), 0.157 (0.155–0.160), 0.195 (0.192–0.200) and 0.249 (0.242–0.258) g/100 mL, respectively. The average BAC percent differences from the target for the positive blind cases ranged from −0.4 to −6.3%, within our uncertainty of measurement (8.95–9.18%). The rate of alcohol evaporation/degradation was determined negligible. A multiple linear regression analysis was performed to compare the % difference in BAC among five target concentrations, eight analysts, three HS-GC-FID instruments and two pipettes. The variables other than target concentrations showed no significant difference (P > 0.2). While the 0.08 g/100 mL target showed a significantly larger % difference than higher target concentrations (0.15–0.25 g/100 mL), the % differences among the higher targets were not concentration-dependent. Despite difficulties like gaining buy-in from stakeholders and mimicking evidence samples, the implementation of a BQC program has improved processes, shown methods are reliable and added confidence to staff’s testimony in court.

Related Resources

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

There currently are no shoe-scanning devices developed in the United States that can operate in a real-world, variable-weather environment in real-time. Forensics-focused groups, including the NIJ, expressed the need for…
A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

Forensic footwear impressions play a crucial role in criminal investigations, assisting in possible suspect identification. The quality of an impression collected from a crime scene directly impacts the forensic information…
Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical.…
Computational Shoeprint Analysis for Forensic Science

Computational Shoeprint Analysis for Forensic Science

Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…