Skip to content

Hunting wild stego images, a domain adaptation problem in digital image forensics

Published: 2020
Primary Author: Li Lin
Research Area: Digital

Digital image forensics is a field encompassing camera identication, forgery detection and steganalysis. Statistical modeling and machine learning have been successfully applied in the academic community of this maturing field. Still, large gaps exist between academic results and applications used by practicing forensic analysts, especially when the target samples are drawn from a different population than the data in a reference database.

This thesis contains four published papers aiming at narrowing this gap in three different fields: mobile stego app detection, digital image steganalysis and camera identification. It is the first work to explore a way of extending the academic methods to real world images created by apps. New ideas and methods are developed for target images with very rich flexibility in the embedding rates, embedding algorithms, exposure settings and camera sources. The experimental results proved that the proposed methods work very well, even for the devices which are not included in the reference database.

Related Resources

Tutorial on Likelihood Ratios with Applications in Digital Forensics

Tutorial on Likelihood Ratios with Applications in Digital Forensics

This CSAFE webinar was held on September 15, 2022. Presenters: Rachel Longjohn PhD Student – Department of Statistics, University of California, Irvine Dr. Padhraic Smyth Chancellor’s Professor – Departments of…
Likelihood Ratios for Categorical Evidence With Applications in Digital Evidence

Likelihood Ratios for Categorical Evidence With Applications in Digital Evidence

The following poster was presented at the 74th Annual Scientific Conference of the American Academy of Forensic Sciences (AAFS), Seattle, Washington, February 21-25, 2022.
Score-Based Likelihood Ratios for Camera Device Identification Using Cameras of the Same Brand for the Alternative Device Population

Score-Based Likelihood Ratios for Camera Device Identification Using Cameras of the Same Brand for the Alternative Device Population

Score-based likelihood ratios are a statistical method for quantifying the weight of evidence and have been used in many areas of forensics, including camera device identification1,2,3. Small sensor imperfections caused…
Forensic Analysis on Cryptocurrency Wallet Apps

Forensic Analysis on Cryptocurrency Wallet Apps

The following was presented at the 74th Annual Scientific Conference of the American Academy of Forensic Sciences (AAFS), Seattle, Washington, February 21-25, 2022.