Skip to content

Hunting wild stego images, a domain adaptation problem in digital image forensics

Published: 2020
Primary Author: Li Lin
Research Area: Digital

Digital image forensics is a field encompassing camera identication, forgery detection and steganalysis. Statistical modeling and machine learning have been successfully applied in the academic community of this maturing field. Still, large gaps exist between academic results and applications used by practicing forensic analysts, especially when the target samples are drawn from a different population than the data in a reference database.

This thesis contains four published papers aiming at narrowing this gap in three different fields: mobile stego app detection, digital image steganalysis and camera identification. It is the first work to explore a way of extending the academic methods to real world images created by apps. New ideas and methods are developed for target images with very rich flexibility in the embedding rates, embedding algorithms, exposure settings and camera sources. The experimental results proved that the proposed methods work very well, even for the devices which are not included in the reference database.

Related Resources

Forensic Analysis of Android Cloud SDKs

Forensic Analysis of Android Cloud SDKs

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
The Impact of Multi-Camera Smart Phones on Source Camera Identification

The Impact of Multi-Camera Smart Phones on Source Camera Identification

An investigator has a questioned image from an unknown source and wants to determine whether it came from a camera on a person of interest’s smartphone. This scenario is referred…
Likelihood ratios for changepoints in categorical event data with applications in digital forensics

Likelihood ratios for changepoints in categorical event data with applications in digital forensics

We investigate likelihood ratio models motivated by digital forensics problems involving time-stamped user-generated event data from a device or account. Of specific interest are scenarios where the data may have…
Producing Datasets: Capturing Images on Multi-Camera Smartphones for Source Camera Identification

Producing Datasets: Capturing Images on Multi-Camera Smartphones for Source Camera Identification

This poster introduces the new CSAFE Multi-camera Smartphone Image Database and describes how the image were collected and reviewed.