Skip to content

Ensemble of SLR Systems for Forensic Evidence

Conference/Workshop:
American Academy of Forensic Sciences (AAFS)
Published: 2022
Primary Author: Federico Veneri
Secondary Authors: Danica Ommen

Score-based likelihood ratios (SLR) have been used as an alternative to feature-based likelihood ratios when the construction of a probabilistic model becomes challenging or infeasible [1]. Although SLR has been shown to provide an alternative way to present a numeric assessment of evidential strength, there are still concerns regarding their use in a forensic setting [2]. The SLR approach requires two key components. First, developing a (dis)similarity score, and second, estimating the distribution of the scores under both prosecutor and defense propositions. This process relies on the construction of pairwise comparisons in both stages. Previous work addresses the dependency on the sets used for producing SLR, how introducing perturbation to the sets can lead the forensic examiner to different conclusions, particularly the sensitivity during the second stage [3]. A second less explored dependence structure is produced because forensic glass evidence can be thought to be generated by a hierarchical model [4]. When a pairwise comparison is made, the same source enters the comparison multiple times, undermining the independence assumption often required by the methods used for developing a (dis)similarity score and estimating their distribution. We introduce an ensemble method for creating an SLR system that aims to reduce sensitivity to perturbation in the samples and remove the dependence structure. We create independent subsets by sampling only one comparison from each source to create base SLR systems, and then ensemble them in a final system that can be used in a later stage.

Related Resources

The q–q Boxplot

The q–q Boxplot

Boxplots have become an extremely popular display of distribution summaries for collections of data, especially when we need to visualize summaries for several collections simultaneously. The whiskers in the boxplot…
The Contribution of Forensic and Expert Evidence to DNA Exoneration Cases: An Interim Report

The Contribution of Forensic and Expert Evidence to DNA Exoneration Cases: An Interim Report

This report is from Simon A. Cole, Vanessa Meterko, Sarah Chu, Glinda Cooper, Jessica Weinstock Paredes, Maurice Possley, and Ken Otterbourg (2022), The Contribution of Forensic and Expert Evidence to…
Likelihood ratios for categorical count data with applications in digital forensics

Likelihood ratios for categorical count data with applications in digital forensics

We consider the forensic context in which the goal is to assess whether two sets of observed data came from the same source or from different sources. In particular, we…
CSAFE Project Update & ASCLD FRC Collaboration

CSAFE Project Update & ASCLD FRC Collaboration

This presentation highlighted CSAFE’s collaboration with the ASCLD FRC Collaboration Hub.