Skip to content

Density-based matching rule: Optimality, estimation, and application in forensic problems

Journal: Annals of Applied Statistics
Published: 2024
Primary Author: Hana Lee
Secondary Authors: Yumou Qiu, Alicia Carriquiry, Danica Ommen
Research Area: Forensic Statistics

We consider matching problems where the goal is to determine whether two observations randomly drawn from a population with multiple (sub)groups are from the same (sub)group. This is a key question in forensic science, where items with unidentified origins from suspects and crime scenes are compared to objects from a known set of sources to see if they originated from the same source. We derive the optimal matching rule under known density functions of data that minimizes the decision error probabilities. Empirically, the proposed matching rule is computed by plugging parametrically estimated density functions using training data into the formula of the optimal matching rule. The connections between the optimal matching rule and existing methods in forensic science are explained. In particular, we contrast the optimal matching rule to classification and also compare it to a score-based approach that relies on similarity features extracted from paired items. Numerical simulations are conducted to evaluate the proposed method and show that it outperforms the existing methods in terms of a higher ROC curve and higher power to identify matched pairs of items. We also demonstrate the utility of the proposed method by applying it to a real forensic data analysis of glass fragments.

Related Resources

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

There currently are no shoe-scanning devices developed in the United States that can operate in a real-world, variable-weather environment in real-time. Forensics-focused groups, including the NIJ, expressed the need for…
A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

A Quantitative Approach for Forensic Footwear Quality Assessment using Machine and Deep Learning

Forensic footwear impressions play a crucial role in criminal investigations, assisting in possible suspect identification. The quality of an impression collected from a crime scene directly impacts the forensic information…
Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical.…
Computational Shoeprint Analysis for Forensic Science

Computational Shoeprint Analysis for Forensic Science

Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…