Skip to content

Cross-Domain Forensic Shoeprint Matching

Journal: Proceedings of British Machine Vision Conference
Published: 2017
Primary Author: Bailey Kong
Secondary Authors: J. Supancic, D. Ramana, C. Fowlkes
Research Area: Footwear

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for these specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Finally, we introduce a discriminatively trained variant and fine-tune our system end-to-end, obtaining state-of-the-art performance.

Related Resources

Computational Shoeprint Analysis for Forensic Science

Computational Shoeprint Analysis for Forensic Science

Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…
Challenges in Modeling, Interpreting, and Drawing Conclusions from Images as Forensic Evidence

Challenges in Modeling, Interpreting, and Drawing Conclusions from Images as Forensic Evidence

When a crime is committed, law enforcement directs crime scene experts to obtain evidence that may be pertinent to identifying the perpetrator(s). Much of this evidence comes in the form…
Aligning Shoeprint Images that have nonlinear distortion effects

Aligning Shoeprint Images that have nonlinear distortion effects

Shoeprints are aligned before assessing similarity, and automatic alignment algorithms can handle differences in translation, rotation [1], and scale. But shoeprints recorded at a crime scene may be partials photographed…
Graph-Theoretic Techniques for Forensic Image Comparisons

Graph-Theoretic Techniques for Forensic Image Comparisons

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.