Skip to content

Analyzing User-Event Data Using Score- Based Likelihood Ratios with Marked Point Processes

Journal: Digital Investigation
Published: 2017
Primary Author: Christopher Galbraith
Secondary Authors: Padhraic Smyth
Research Area: Digital

In this paper we investigate the application of score-based likelihood ratio techniques to the problem of detecting whether two time-stamped event streams were generated by the same source or by two different sources. We develop score functions for event data streams by building on ideas from the statistical modeling of marked point processes, focusing in particular on the coefficient of segregation and mingling index. The methodology is applied to a data set consisting of logs of computer activity over a 7-day period from 28 different individuals. Experimental results on known same-source and known different-source data sets indicate that the proposed scores have significant discriminative power in this context. The paper concludes with a discussion of the potential benefits and challenges that may arise from the application of statistical analysis to user-event data in digital forensics.

Related Resources

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

Forensic Footwear: A Retrospective of the Development of the MANTIS Shoe Scanning System

There currently are no shoe-scanning devices developed in the United States that can operate in a real-world, variable-weather environment in real-time. Forensics-focused groups, including the NIJ, expressed the need for…
Examiner consistency in perceptions of fingerprint minutia rarity

Examiner consistency in perceptions of fingerprint minutia rarity

Friction ridge examiners (FREs) identify distinctive features (minutiae) in fingerprints and consider how rare these observed minutiae are in their decisions about both the value of a fingerprint and whether…
Incorrect statistical reasoning in Guyll et al. leads to biased claims about strength of forensic evidence

Incorrect statistical reasoning in Guyll et al. leads to biased claims about strength of forensic evidence

Guyll et al. (1) make an error in statistical reasoning that could lead judges and jurors in criminal trials to grossly misinterpret forensic evidence. Their error leads to highly inflated…
Interoperability Study of 3D Instruments Used in Firearms Identification

Interoperability Study of 3D Instruments Used in Firearms Identification

In forensic firearms identification, one of the newest emerging technologies is three-dimensional (3D) imaging. The 3D technology allows firearms examiners to virtually compare high-resolution 3D images of the surfaces of…