Skip to content

Analyzing User-Event Data Using Score- Based Likelihood Ratios with Marked Point Processes

Journal: Digital Investigation
Published: 2017
Primary Author: Christopher Galbraith
Secondary Authors: Padhraic Smyth
Research Area: Digital

In this paper we investigate the application of score-based likelihood ratio techniques to the problem of detecting whether two time-stamped event streams were generated by the same source or by two different sources. We develop score functions for event data streams by building on ideas from the statistical modeling of marked point processes, focusing in particular on the coefficient of segregation and mingling index. The methodology is applied to a data set consisting of logs of computer activity over a 7-day period from 28 different individuals. Experimental results on known same-source and known different-source data sets indicate that the proposed scores have significant discriminative power in this context. The paper concludes with a discussion of the potential benefits and challenges that may arise from the application of statistical analysis to user-event data in digital forensics.

Related Resources

Likelihood Ratios for Categorical Evidence With Applications in Digital Evidence

Likelihood Ratios for Categorical Evidence With Applications in Digital Evidence

The following poster was presented at the 74th Annual Scientific Conference of the American Academy of Forensic Sciences (AAFS), Seattle, Washington, February 21-25, 2022.
Score-Based Likelihood Ratios for Camera Device Identification Using Cameras of the Same Brand for the Alternative Device Population

Score-Based Likelihood Ratios for Camera Device Identification Using Cameras of the Same Brand for the Alternative Device Population

Score-based likelihood ratios are a statistical method for quantifying the weight of evidence and have been used in many areas of forensics, including camera device identification1,2,3. Small sensor imperfections caused…
Forensic Analysis on Cryptocurrency Wallet Apps

Forensic Analysis on Cryptocurrency Wallet Apps

The following was presented at the 74th Annual Scientific Conference of the American Academy of Forensic Sciences (AAFS), Seattle, Washington, February 21-25, 2022.
Mobile steganography: Looking to the future

Mobile steganography: Looking to the future

Humans have sent secret messages for millennia. A cousin to cryptography, steganography is the art and science of sending a secret message in the open by camouflaging the message carefully.…