We introduce an algorithmic approach designed to compare similar shoeprint images, with automated alignment. Our method employs the Iterative Closest Points (ICP) algorithm to attain optimal alignment, further enhancing precision through phase-only correlation. Utilizing diverse metrics to quantify similarity, we train a random forest model to predict the empirical probability that two impressions originate from the same shoe. Experimental evaluations using high-quality two-dimensional shoeprints showcase our proposed algorithm’s robustness in managing dissimilarities between impressions from the same shoe, outperforming existing approaches.
An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics
Published: 2024
Primary Author: Hana Lee
Secondary Authors: Alicia Carriquiry, Soyoung Park
Type: Publication
Research Area: Footwear
Related Resources
Computational Shoeprint Analysis for Forensic Science
Shoeprints are a common type of evidence found at crime scenes and are regularly used in forensic investigations. However, their utility is limited by the lack of reference footwear databases…
Challenges in Modeling, Interpreting, and Drawing Conclusions from Images as Forensic Evidence
When a crime is committed, law enforcement directs crime scene experts to obtain evidence that may be pertinent to identifying the perpetrator(s). Much of this evidence comes in the form…
Aligning Shoeprint Images that have nonlinear distortion effects
Shoeprints are aligned before assessing similarity, and automatic alignment algorithms can handle differences in translation, rotation [1], and scale. But shoeprints recorded at a crime scene may be partials photographed…
Graph-Theoretic Techniques for Forensic Image Comparisons
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.