Footwear examiners are tasked with comparing an outsole impression (Q) left at a crime scene with an impression (K) from a database or from the suspect’s shoe. We propose a method for comparing two shoe outsole impressions that relies on robust features (speeded‐up robust feature; SURF) on each impression and aligns them using a maximum clique (MC). After alignment, an algorithm we denote MC‐COMP is used to extract additional features that are then combined into a univariate similarity score using a random forest (RF). We use a database of shoe outsole impressions that includes images from two models of athletic shoes that were purchased new and then worn by study participants for about 6 months. The shoes share class characteristics such as outsole pattern and size, and thus the comparison is challenging. We find that the RF implemented on SURF outperforms other methods recently proposed in the literature in terms of classification precision. In more realistic scenarios where crime scene impressions may be degraded and smudged, the algorithm we propose—denoted MC‐COMP‐SURF—shows the best classification performance by detecting unique features better than other methods. The algorithm can be implemented with the R‐package shoeprintr.
An algorithm to compare two‐dimensional footwear outsole images using maximum cliques and speeded‐up robust feature

Journal: Statistical Analysis and Data Mining
Published: 2020
Primary Author: Soyoung Park
Secondary Authors: Soyoung Park
Type: Publication
Research Area: Footwear
Related Resources
A New Algorithm for Source Identification of Look-alike Footwear Impressions Based on Automatic Alignment
Presentation at the International Association for Identification
Center for Statistics and Application in Forensic Evidence Update
The information below highlights a sample of current research initiatives led by the CSAFE team. Additional accomplishments in other forensic science disciplines will be discussed in subsequent issues of Forensic…
Automatic Class Characteristic Recognition in Shoe Tread Images
One of the fundamental problems in footwear forensics is that the distribution of class characteristics in the local population is not currently knowable. Surveillance devices for gathering this data are…
Modeling And iNventory of Tread Impression System (MANTIS): The development, deployment and application of an active footwear data collection system
This CSAFE webinar was held on March 24, 2022. Presenters: Dr. Richard Stone Iowa State University Dr. Susan Vanderplas University of Nebraska, Lincoln Presentation Description: This webinar details the development,…