Skip to content

An algorithm to compare two‐dimensional footwear outsole images using maximum cliques and speeded‐up robust feature

Journal: Statistical Analysis and Data Mining
Published: 2020
Primary Author: Soyoung Park
Secondary Authors: Soyoung Park
Research Area: Footwear

Footwear examiners are tasked with comparing an outsole impression (Q) left at a crime scene with an impression (K) from a database or from the suspect’s shoe. We propose a method for comparing two shoe outsole impressions that relies on robust features (speeded‐up robust feature; SURF) on each impression and aligns them using a maximum clique (MC). After alignment, an algorithm we denote MC‐COMP is used to extract additional features that are then combined into a univariate similarity score using a random forest (RF). We use a database of shoe outsole impressions that includes images from two models of athletic shoes that were purchased new and then worn by study participants for about 6 months. The shoes share class characteristics such as outsole pattern and size, and thus the comparison is challenging. We find that the RF implemented on SURF outperforms other methods recently proposed in the literature in terms of classification precision. In more realistic scenarios where crime scene impressions may be degraded and smudged, the algorithm we propose—denoted MC‐COMP‐SURF—shows the best classification performance by detecting unique features better than other methods. The algorithm can be implemented with the R‐package shoeprintr.

Related Resources

Open Forensic Science in R

Open Forensic Science in R

This book is for anyone looking to do forensic science analysis in a data-driven and open way. Whether you are a student, teacher, or scientist, this book is for you. We take…
Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

We propose a novel method to quantify the similarity between an impression (Q) from an unknown source and a test impression (K) from a known source. Using the property of…
Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

Quantifying the similarity of 2D images using edge pixels: An application to the forensic comparison of footwear impressions

We propose a novel method to quantify the similarity between an impression (Q) from an unknown source and a test impression (K) from a known source. Using the property of…
A database of two-dimensional images of footwear outsole impressions

A database of two-dimensional images of footwear outsole impressions

Footwear outsole images were obtained from 150 pairs of used shoes. The motivation for constructing the database was to enable a statistical analysis of two-dimensional (2D) images of shoe outsoles,…