Footwear examiners are tasked with comparing an outsole impression (Q) left at a crime scene with an impression (K) from a database or from the suspect’s shoe. We propose a method for comparing two shoe outsole impressions that relies on robust features (speeded‐up robust feature; SURF) on each impression and aligns them using a maximum clique (MC). After alignment, an algorithm we denote MC‐COMP is used to extract additional features that are then combined into a univariate similarity score using a random forest (RF). We use a database of shoe outsole impressions that includes images from two models of athletic shoes that were purchased new and then worn by study participants for about 6 months. The shoes share class characteristics such as outsole pattern and size, and thus the comparison is challenging. We find that the RF implemented on SURF outperforms other methods recently proposed in the literature in terms of classification precision. In more realistic scenarios where crime scene impressions may be degraded and smudged, the algorithm we propose—denoted MC‐COMP‐SURF—shows the best classification performance by detecting unique features better than other methods. The algorithm can be implemented with the R‐package shoeprintr.
An algorithm to compare two‐dimensional footwear outsole images using maximum cliques and speeded‐up robust feature
Journal: Statistical Analysis and Data Mining
Published: 2020
Primary Author: Soyoung Park
Secondary Authors: Soyoung Park
Type: Publication
Research Area: Footwear
Related Resources
Graph-Theoretic Techniques for Forensic Image Comparisons
This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
ShoeCase: A data set of mock crime scene footwear impressions
This project’s main objective is to create an open-source database containing a sizeable number of high-quality images of shoe impressions. The Center for Statistics and Applications in Forensic Evidence (CSAFE)…
A finely tuned deep transfer learning algorithm to compare outsole images
In forensic practice, evaluating shoeprint evidence is challenging because the differences between images of two different outsoles can be subtle. In this paper, we propose a deep transfer learning-based matching…
An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics
We introduce an algorithmic approach designed to compare similar shoeprint images, with automated alignment. Our method employs the Iterative Closest Points (ICP) algorithm to attain optimal alignment, further enhancing precision…