Skip to content

Algorithm mismatch in spatial steganalysis

Conference/Workshop:
IS&T International Symposium on Electronic Imaging, Media Watermarking, Security, and Forensics 2019
Published: 2019
Primary Author: Stephanie Reinders
Secondary Authors: Li Lin, Yong Guan, Min Wu, Jennifer Newman
Research Area: Digital

The number and availability of stegonographic embedding algorithms continues to grow. Many traditional blind steganalysis frameworks require training examples from every embedding algorithm, but collecting, storing and processing representative examples of each algorithm can quickly become untenable. Our motivation for this paper is to create a straight-forward, nondata-intensive framework for blind steganalysis that only requires examples of cover images and a single embedding algorithm for training. Our blind steganalysis framework addresses the case of algorithm mismatch, where a classifier is trained on one algorithm and tested on another, with four spatial embedding algorithms: LSB matching, MiPOD, S-UNIWARD and WOW.

We use RAW image data from the BOSSbase database and and data collected from six iPhone devices. Ensemble Classifiers with Spatial Rich Model features are trained on a single embedding algorithm and tested on each of the four algorithms. Classifiers trained on MiPOD, S-UNIWARD and WOW data achieve decent error rates when testing on all four algorithms. Most notably, an Ensemble Classifier with an adjusted decision threshold trained on LSB matching data achieves decent detection results on MiPOD, S-UNIWARD and WOW data.

Related Resources

Forensic Analysis of Android Cloud SDKs

Forensic Analysis of Android Cloud SDKs

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
The Impact of Multi-Camera Smart Phones on Source Camera Identification

The Impact of Multi-Camera Smart Phones on Source Camera Identification

An investigator has a questioned image from an unknown source and wants to determine whether it came from a camera on a person of interest’s smartphone. This scenario is referred…
Likelihood ratios for changepoints in categorical event data with applications in digital forensics

Likelihood ratios for changepoints in categorical event data with applications in digital forensics

We investigate likelihood ratio models motivated by digital forensics problems involving time-stamped user-generated event data from a device or account. Of specific interest are scenarios where the data may have…
Producing Datasets: Capturing Images on Multi-Camera Smartphones for Source Camera Identification

Producing Datasets: Capturing Images on Multi-Camera Smartphones for Source Camera Identification

This poster introduces the new CSAFE Multi-camera Smartphone Image Database and describes how the image were collected and reviewed.