Skip to content

A Robust Approach to Automatically Locating Grooves in 3D Bullet Land Scans

Journal: Journal of Forensic Sciences
Published: 2019
Primary Author: Kiegan Rice
Secondary Authors: Ulrike Genschel, Heike Hofmann
Research Area: Firearms and Toolmarks

Land engraved areas (LEAs) provide evidence to address the same source–different source problem in forensic firearms examination. Collecting 3D images of bullet LEAs requires capturing portions of the neighboring groove engraved areas (GEAs). Analyzing LEA and GEA data separately is imperative to accuracy in automated comparison methods such as the one developed by Hare et al. (Ann Appl Stat 2017;11, 2332). Existing standard statistical modeling techniques often fail to adequately separate LEA and GEA data due to the atypical structure of 3D bullet data. We developed a method for automated removal of GEA data based on robust locally weighted regression (LOESS). This automated method was tested on high‐resolution 3D scans of LEAs from two bullet test sets with a total of 622 LEA scans. Our robust LOESS method outperforms a previously proposed “rollapply” method. We conclude that our method is a major improvement upon rollapply, but that further validation needs to be conducted before the method can be applied in a fully automated fashion.

Related Resources

Treatment of inconclusives in the AFTE range of conclusions

Treatment of inconclusives in the AFTE range of conclusions

In the past decade, and in response to the recommendations set forth by the National Research Council Committee on Identifying the Needs of the Forensic Sciences Community (2009), scientists have…
Using Machine Learning Methods to Predict Similarity of Striations on Bullet Lands

Using Machine Learning Methods to Predict Similarity of Striations on Bullet Lands

Recent advances in microscopy have made it possible to collect 3D topographic data, enabling virtual comparisons based on the collected 3D data next to traditional comparison microscopy. Automatic matching algorithms…
CSAFE 2021 Field Update

CSAFE 2021 Field Update

The 2021 Field Update was held June 14, 2021, and served as the closing to the first year of CSAFE 2.0. CSAFE brought together researchers, forensic science partners and interested…
Treatment of Inconclusive Results in Error Rates of Firearm Studies

Treatment of Inconclusive Results in Error Rates of Firearm Studies

This CSAFE webinar was held on February 10, 2021. Presenters: Heike Hofmann Professor and Kingland Faculty Fellow, Iowa State University Susan VanderPlas Research Assistant Professor, University of Nebraska, Lincoln Alicia…