Skip to content

A Forensic Analysis of Joker-Enabled Android Malware Apps

Conference/Workshop:
American Association of Forensic Sciences (AAFS)
Published: 2021
Primary Author: Chen Shi
Secondary Authors: Chris Cheng, Yong Guan
Research Area: Digital

This project aims at developing a set of automated Android Malware vetting tools to discover all the malicious behaviors of Android Malwares in the forms of files in the local storage, SQLite database, or data sent to remote 3-party server(s). to establish a dictionary-like Android malware database that includes malware themselves (malicious code and variant) with all the detected IP addresses, URLs and malicious behaviors as well as other types of evidence data(e.g., the list of permissions required).

Related Resources

Tutorial on Likelihood Ratios with Applications in Digital Forensics

Tutorial on Likelihood Ratios with Applications in Digital Forensics

This CSAFE webinar was held on September 15, 2022. Presenters: Rachel Longjohn PhD Student – Department of Statistics, University of California, Irvine Dr. Padhraic Smyth Chancellor’s Professor – Departments of…
Likelihood Ratios for Categorical Evidence With Applications in Digital Evidence

Likelihood Ratios for Categorical Evidence With Applications in Digital Evidence

The following poster was presented at the 74th Annual Scientific Conference of the American Academy of Forensic Sciences (AAFS), Seattle, Washington, February 21-25, 2022.
Score-Based Likelihood Ratios for Camera Device Identification Using Cameras of the Same Brand for the Alternative Device Population

Score-Based Likelihood Ratios for Camera Device Identification Using Cameras of the Same Brand for the Alternative Device Population

Score-based likelihood ratios are a statistical method for quantifying the weight of evidence and have been used in many areas of forensics, including camera device identification1,2,3. Small sensor imperfections caused…
Forensic Analysis on Cryptocurrency Wallet Apps

Forensic Analysis on Cryptocurrency Wallet Apps

The following was presented at the 74th Annual Scientific Conference of the American Academy of Forensic Sciences (AAFS), Seattle, Washington, February 21-25, 2022.