Skip to content

A deep learning approach for the comparison of handwritten documents using latent feature vectors

Journal: Statistical Analysis and Data Mining
Published: 2024
Primary Author: Juhyeon Kim
Secondary Authors: Soyoung Park, Alicia Carriquiry

Forensic questioned document examiners still largely rely on visual assessments and expert judgment to determine the provenance of a handwritten document. Here, we propose a novel approach to objectively compare two handwritten documents using a deep learning algorithm. First, we implement a bootstrapping technique to segment document data into smaller units, as a means to enhance the efficiency of the deep learning process. Next, we use a transfer learning algorithm to systematically extract document features. The unique characteristics of the document data are then represented as latent vectors. Finally, the similarity between two handwritten documents is quantified via the cosine similarity between the two latent vectors. We illustrate the use of the proposed method by implementing it on a variety of collections of handwritten documents with different attributes, and show that in most cases, we can accurately classify pairs of documents into same or different author categories

Related Resources

Is it a True Match? Top k correlations in a database search

Is it a True Match? Top k correlations in a database search

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Quantifying Bayes Factors for Forensic Handwriting Evidence

Quantifying Bayes Factors for Forensic Handwriting Evidence

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.
Quantifying Writer Variance Through Rainbow Triangle Graph Decomposition

Quantifying Writer Variance Through Rainbow Triangle Graph Decomposition

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024
Graph-Theoretic Techniques for Forensic Image Comparisons

Graph-Theoretic Techniques for Forensic Image Comparisons

This presentation is from the 76th Annual Conference of the American Academy of Forensic Sciences (AAFS), Denver, Colorado, February 19-24, 2024.