A common goal of forensic shoeprint analysis is to identify shoe models or designs that are similar to that of a given print, such as a print found at a crime scene. Quantifying similarity between shoe outsole patterns is difficult because it requires both a set of well-defined features and an accurate method to classify outsoles according to those features. A set of geometric features was developed based on common geometric shapes, such as circles and quadrilaterals. A new classifier was then trained for the pretrained convolutional neural network base of VGG16 to create a model, named CoNNOR (Convolutional Neural Network for Outsole Recognition), to automatically classify portions of outsole images into the new geometric scheme of outsole class characteristics. During the analysis of CoNNOR’s performance, new diagnostic plots were developed which provide a better method to assess classification errors of multi-class, multi-label models. In general, CoNNOR performs well on images with unambiguous shapes and moderate color contrast; additional improvements may be realized by preprocessing the images to improve contrast as well as by integrating spatial relationships between geometric features. CoNNOR represents a significant improvement to the current manual classification of footwear tread patterns, facilitating new modes of data collection and automatic processing that will expand the data available for assessment of footwear class characteristic frequency in the population.
A convolutional neural network for outsole recognition

Journal: Creative Component
Published: 2019
Primary Author: Miranda Tilton
Secondary Authors: Susan Vanderplas
Type: Publication
Research Area: Footwear
Related Resources
Shoeprint Alignment and Comparison using Maximum Cliques
This presentation is from the 107th International Association for Identification (IAI) Annual Educational Conference, National Harbor, Maryland, August 20-26, 2023. Posted with permission of CSAFE.
An algorithm for source identification of footwear impressions—its application on pristine shoeprints and crime-scene like shoeprints
This presentation is from the 107th International Association for Identification (IAI) Annual Educational Conference, National Harbor, Maryland, August 20-26, 2023. Posted with permission of CSAFE.
CSAFE Project Update & ASCLD FRC Collaboration
This presentation highlighted CSAFE’s collaboration with the ASCLD FRC Collaboration Hub.
Source identification of shoeprints in mock crime scene using an algorithm based on automatic alignment
This presentation is from the 75th Anniversary Conference of the American Academy of Forensic Sciences, Orlando, Florida, February 13-18, 2023. Posted with permission of CSAFE